Skip to main content

Advertisement

Log in

The Role of Neoadjuvant Therapy in Melanoma

  • Melanoma (RJ Sullivan, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Neoadjuvant therapy in melanoma is an area of active investigation with numerous completed and ongoing trials studying a variety of therapeutic interventions utilizing diverse designs. Here, we review completed and ongoing neoadjuvant trials in melanoma, discuss endpoint assessment, and highlight biomarker development in this context.

Recent Findings

High-risk resectable melanoma with clinically detectable lymph node (LN) with or without in-transit and/or satellite metastases represent ~ 20% of melanoma patients and have a high risk of relapse despite definitive surgery. Adjuvant therapy with anti-PD-1 immunotherapy or BRAF/MEK-targeted therapy has improved relapse-free survival (RFS) and overall survival (OS) in large phase III trials and is approved for this indication. However, despite surgery and adjuvant therapy, many patients relapse and/or experience treatment-related toxicity, underscoring the need to identify and understand mechanisms of response and resistance. In melanoma, neoadjuvant therapy is an active area of research with numerous completed and ongoing trials utilizing FDA-approved and novel agents with intriguing results.

Summary

Neoadjuvant therapy for regionally metastatic disease is an established standard in multiple cancers, where it has been shown to improve operability, facilitate biomarker development, and even is a registrational endpoint for drug development in breast cancer. Recently, a spate of neoadjuvant studies in melanoma has looked at a swathe of agents with promising clinical and biomarker results. Coordinated efforts are underway to translate these findings to earlier stage disease while prioritizing the evaluation of new strategies in unresectable disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. NCI NCI. Surveillance, Epidemiology, and End Results (SEER) Program Populations (1969–2017) [Internet]. 2018 [cited 2018]. Available from: www.seer.cancer.gov/popdata. Accessed 1 May 2020.

  2. Long GV, Hauschild A, Santinami M, Atkinson V, Mandalà M, Chiarion-Sileni V, et al. Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N Engl J Med. 2017;377(19):1813–23.

    CAS  PubMed  Google Scholar 

  3. Weber J, Mandala M, Vecchio MD, Gogas HJ, Arance AM, Cowey CL, et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. New Engl J Med. 2017;377:1824–35.

    CAS  PubMed  Google Scholar 

  4. Eggermont A, Blank CU, Mandala M, Long GV, Atkinson V, Dalle S, et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med. 2018;378(19):1789–1801. https://doi.org/10.1056/NEJMoa1802357.

  5. Weber J, et al. Adjuvant nivolumab (NIVO) versus ipilimumab (IPI) in resected stage III/IV melanoma: 3-year efficacy and biomarker results from the phase III CheckMate 238 trial. Ann Oncol. 2019:v533–4. https://doi.org/10.1093/annonc/mdz255.

  6. Amaria RN, Menzies AM, Burton EM, Scolyer RA, Tetzlaff MT, Antdbacka R, et al. Neoadjuvant systemic therapy in melanoma: recommendations of the International Neoadjuvant Melanoma Consortium. Lancet Oncol. 2019;20(7):e378–89.

    PubMed  Google Scholar 

  7. Volders JH, Negenborn VL, Spronk PE, Krekel NM, Schoonmade LJ, Meijer S, et al. Breast-conserving surgery following neoadjuvant therapy—a systematic review on surgical outcomes. Breast Cancer Res Treat. 2017;168(1):1–12.

    PubMed  PubMed Central  Google Scholar 

  8. Gralow JR, Burstein HJ, Wood W, Hortobagyi GN, Gianni L, von Minckwitz G, et al. Preoperative therapy in invasive breast cancer: pathologic assessment and systemic therapy issues in operable disease. J Clin Oncol. 2008;26(5):814–9.

    PubMed  Google Scholar 

  9. Schwartz GF, Hortobagyi GN, Committee C. Proceedings of the consensus conference on neoadjuvant chemotherapy in carcinoma of the breast, April 26-28, 2003, Philadelphia, Pennsylvania. Cancer. 2004;100(12):2512–32.

    PubMed  Google Scholar 

  10. Scholl, Fourquet A, Selain, Pierga J, Vilcoq J, Durand J, et al. Neoadjuvant versus adjuvant chemotherapy in premenopausal patients with tumours considered too large for breast conserving surgery: preliminary results of a randomised trial: S6. Eur J Cancer. 1994;30(5):645–52.

    Google Scholar 

  11. van der Hage JA, van de Velde CJ, Julien J-P, Tubiana-Hulin M, Vandervelden C, Duchateau L, et al. Preoperative chemotherapy in primary operable breast cancer: results from the European Organization for Research and Treatment of Cancer Trial 10902. J Clin Oncol. 2001;19(22):4224–37.

    PubMed  Google Scholar 

  12. Wolmark N, Wang J, Mamounas E, Bryant J, Fisher B. Preoperative chemotherapy in patients with operable breast cancer: nine-year results from National Surgical Adjuvant Breast and Bowel Project B-18. J Natl Cancer Inst Monogr. 2001;2001(30):96–102.

    Google Scholar 

  13. Davidson N, Morrow M. Sometimes a great notion—an assessment of neoadjuvant systemic therapy for breast cancer. J Natl Cancer Inst. 2005;97(3):159–61.

    PubMed  Google Scholar 

  14. Gianni L, Pienkowski T, Im Y-H, Roman L, Tseng L-M, Liu M-C, et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012;13(1):25–32.

    CAS  PubMed  Google Scholar 

  15. Mauri D, Pavlidis N, Ioannidis J. Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. J Natl Cancer Inst. 2005;97(3):188–94.

    PubMed  Google Scholar 

  16. Rastogi P, Anderson SJ, Bear HD, Geyer CE, Kahlenberg MS, Robidoux A, et al. Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol. 2008;26(5):778–85.

    PubMed  Google Scholar 

  17. Khunger A, Buchwald ZS, Lowe M, Khan MK, Delman KA, Tarhini AA. Neoadjuvant therapy of locally/regionally advanced melanoma. Ther Adv Med Oncol. 2019;11:1758835919866959.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384(9938):164–72.

    PubMed  Google Scholar 

  19. Liu J, Blake SJ, Yong M, Harjunpää H, Ngiow S, Takeda K, et al. Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease. Cancer Discov. 2016;6(12):1382–99.

    CAS  PubMed  Google Scholar 

  20. Liu J, O’Donnell JS, Yan J, Madore J, Allen S, Smyth MJ, et al. Timing of neoadjuvant immunotherapy in relation to surgery is crucial for outcome. Oncoimmunology. 2019;8(5):e1581530.

    PubMed  PubMed Central  Google Scholar 

  21. Kirkwood J, Strawderman M, Ernstoff ST, Borden E, Blum R. Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J Clin Oncol. 1996;14(1):7–17.

    CAS  PubMed  Google Scholar 

  22. Kirkwood J, Ibrahim J, Sosman J, Sondak V, Agarwala S, Ernstoff, et al. High-dose interferon alfa-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB-III melanoma: results of intergroup trial E1694/S9512/C509801. J Clin Oncol. 2001;19(9):2370–80.

    CAS  PubMed  Google Scholar 

  23. Hauschild A, Weichenthal M, Rass K, Linse R, Berking C, Böttjer J, et al. Efficacy of low-dose interferon α2a 18 versus 60 months of treatment in patients with primary melanoma of ≥ 1.5 mm tumor thickness: results of a randomized phase III DeCOG trial. J Clin Oncol. 2010;28(5):841–6.

    CAS  PubMed  Google Scholar 

  24. Moschos SJ, Edington HD, Land SR, Rao UN, Jukic D, Shipe-Spotloe J, et al. Neoadjuvant treatment of regional stage IIIB melanoma with high-dose interferon Alfa-2b induces objective tumor regression in association with modulation of tumor infiltrating host cellular immune responses. J Clin Oncol. 2006;24(19):3164–71.

    CAS  PubMed  Google Scholar 

  25. Lewis KD, Robinson WA, McCarter M, Pearlman N, O’Day SJ, Anderson C, et al. Phase II multicenter study of neoadjuvant biochemotherapy for patients with stage III malignant melanoma. J Clin Oncol. 2006;24(19):3157–63.

    CAS  PubMed  Google Scholar 

  26. Brunet J-F, Denizot F, Luciani M-F, Roux-Dosseto M, Suzan M, Mattei M-G, et al. A new member of the immunoglobulin superfamily—CTLA-4. Nature. 1987;328(6127):267–70.

    CAS  PubMed  Google Scholar 

  27. Teft WA, Kirchhof MG, Madrenas J. A molecular perspective of CTLA-4 function. Annu Rev Immunol. 2006;24(1):65–97.

    CAS  PubMed  Google Scholar 

  28. Hurwitz A, Yu, Leach D, Allison J. CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc Natl Acad Sci. 1998;95(17):10067–71.

    CAS  PubMed  Google Scholar 

  29. van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte–associated antigen 4 (Ctla-4) and granulocyte/macrophage colony-stimulating factor (Gm-Csf)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med. 1999;190(3):355–66.

    PubMed  PubMed Central  Google Scholar 

  30. Leach D, Krummel M, Allison J. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6.

    CAS  PubMed  Google Scholar 

  31. Hodi SF, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517–26.

    CAS  PubMed  Google Scholar 

  33. Schadendorf D. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 2015;33:1889–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tarhini AA, Edington H, Butterfield LH, Lin Y, Shuai Y, Tawbi H, et al. Immune monitoring of the circulation and the tumor microenvironment in patients with regionally advanced melanoma receiving neoadjuvant ipilimumab. PLoS One. 2014;9(2):e87705.

    PubMed  PubMed Central  Google Scholar 

  35. Tarhini A, Lin Y, Lin H, Rahman Z, Vallabhaneni P, Mendiratta P, et al. Neoadjuvant ipilimumab (3 mg/kg or 10 mg/kg) and high dose IFN-α2b in locally/regionally advanced melanoma: safety, efficacy and impact on T-cell repertoire. J Immunother Cancer. 2018;6(1):112.

    PubMed  PubMed Central  Google Scholar 

  36. Bennett F, Luxenberg D, Ling V, Wang I-M, Marquette K, Lowe D, et al. Program death-1 engagement upon TCR activation has distinct effects on costimulation and cytokine-driven proliferation: attenuation of ICOS, IL-4, and IL-21, but not CD28, IL-7, and IL-15 responses. J Immunol. 2003;170(2):711–8.

    CAS  PubMed  Google Scholar 

  37. Loke P, Allison J. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc Natl Acad Sci. 2003;100(9):5336–41.

    CAS  PubMed  Google Scholar 

  38. Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2(3):261–8.

    CAS  PubMed  Google Scholar 

  39. Tseng S-Y, Otsuji M, Gorski K, Huang X, Slansky JE, Pai SI, et al. B7-dc, a new dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med. 2001;193(7):839–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jin H-T, Anderson AC, Tan WG, West EE, Ha S-J, Araki K, et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc Natl Acad Sci U S A. 2010;107(33):14733–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Liang SC, Latchman YE, Buhlmann JE, Tomczak MF, Horwitz BH, Freeman GJ, et al. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol. 2003;33(10):2706–16.

    CAS  PubMed  Google Scholar 

  42. Fourcade J, Kudela P, Sun Z, Shen H, Land SR, Lenzner D, et al. PD-1 is a regulator of NY-ESO-1-specific CD8+ T cell expansion in melanoma patients. J Immunol. 2009;182(9):5240–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee H, Lee S, Heo Y-S. Molecular interactions of antibody drugs targeting PD-1, PD-L1, and CTLA-4 in immuno-oncology. Molecules. 2019;24(6):1190.

    PubMed Central  Google Scholar 

  44. Wu X, Gu Z, Chen Y, Chen B, Chen W, Weng L, et al. Application of PD-1 blockade in cancer immunotherapy. Comput Struct Biotechnol J. 2019;17:661–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. New Engl J Med. 2015;372(1):30–9.

    PubMed  Google Scholar 

  46. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30.

    CAS  PubMed  Google Scholar 

  47. Larkin J, Lao CD, Urba WJ. rmott DF, Horak C, Jiang J, et al. Efficacy and safety of nivolumab in patients with BRAF V600 mutant and BRAF wild-type advanced melanoma: a pooled analysis of 4 clinical trials. JAMA Oncol. 2015;1(4):433–40.

    PubMed  Google Scholar 

  48. Ribas A, Hamid O, Daud A, Hodi SF, Wolchok JD, Kefford R, et al. Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA. 2016;315(15):1600–9.

    CAS  PubMed  Google Scholar 

  49. Das R, Verma R, Sznol M, Boddupalli C, Gettinger SN, Kluger H, et al. Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo. J Immunol. 2014;194(3):950–9.

    PubMed  PubMed Central  Google Scholar 

  50. Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515(7528):577–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob J-J, Cowey LC, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377(14):1345–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob J-J, Rutkowski P, Lao CD, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381(16):1535–46.

    CAS  PubMed  Google Scholar 

  53. Amaria RN, Reddy SM, Tawbi HA, Davies MA, Ross MI, Glitza IC, et al. Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat Med. 2018;24(11):1649–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Blank CU, Rozeman EA, Fanchi LF, Sikorska K, van de Wiel B, Kvistborg P, et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat Med. 2018;24(11):1655–61.

    CAS  PubMed  Google Scholar 

  55. Rozeman EA, Menzies AM, van Akkooi AC, Adhikari C, Bierman C, van de Wiel BA, et al. Identification of the optimal combination dosing schedule of neoadjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma (OpACIN-neo): a multicentre, phase 2, randomised, controlled trial. Lancet Oncol. 2019;20(7):948–960. https://doi.org/10.1016/S1470-2045(19)30151-2. This study evaluated peri-operative administration of 3 separate schedules of Ipilimumab/Nivolumab prior to surgery in high-risk resectable melanoma. While all 3 schedules had varying degrees of toxicity, 2 cycles of Ipi-1/Nivo-3 resulted in high pCR rates.

  56. Huang AC, Orlowski RJ, Xu X, Mick R, George SM, Yan PK, et al. A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma. Nat Med. 2019;25(3):454–61 This study evaluated peri-operative administration of a single dose of pembrolizumab prior to surgery in high-risk resectable melanoma. Pembrolizumab x1 resulted in 19% pCR and was minimally toxic. Of note, investigators noted that responders tended to have circulating activated antigen-specific (TEX), confirming prior reports that suggested that this was a circulating predictive biomarker.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Najjar Y, McCurry D, Lin H, Lin Y, Davar D, Drabick JJ, et al. A phase I study of neoadjuvant combination immunotherapy in locally/regionally advanced melanoma. J Clin Oncol. 2019;37(15_suppl):9586.

    Google Scholar 

  58. Dummer R, Gyorki DE, Hyngstrom J, Berger AC, Conry R, Demidov LV, et al. One-year (yr) recurrence-free survival (RFS) from a randomized, open label phase II study of neoadjuvant (neo) talimogene laherparepvec (T-VEC) plus surgery (surgx) versus surgx for resectable stage IIIB-IVM1a melanoma (MEL). J Clin Oncol. 2019;37(15_suppl):9520.

    Google Scholar 

  59. Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, Manne S, et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature. 2017;545(7652):60–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Simoni Y, Becht E, Fehlings M, Loh C, Koo S-L, Teng K, et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature. 2018;557(7706):575–9.

    CAS  PubMed  Google Scholar 

  61. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127(8):2930–40.

    PubMed  PubMed Central  Google Scholar 

  62. Cristescu R, Mogg R, Ayers M, Albright A, Murphy E, Yearley J, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade–based immunotherapy. Science. 2018;362(6411):eaar3593.

    PubMed  PubMed Central  Google Scholar 

  63. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hauschild A, Grob J-J, Demidov LV, Jouary T, Gutzmer R, Millward M, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380(9839):358–65.

    CAS  PubMed  Google Scholar 

  65. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med. 2014;371(20):1877–88.

    PubMed  Google Scholar 

  66. Larkin J, Ascierto PA, Dréno B, Atkinson V, Liszkay G, Maio M, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014;371(20):1867–76.

    PubMed  Google Scholar 

  67. Amaria RN, Prieto PA, Tetzlaff MT, Reuben A, Andrews MC, Ross MI, et al. Neoadjuvant plus adjuvant dabrafenib and trametinib versus standard of care in patients with high-risk, surgically resectable melanoma: a single-centre, open-label, randomised, phase 2 trial. Lancet Oncol. 2018;19(2):181–93 This study evaluated adjuvant vs. neoadjuvant administration of Dabrafenib/Trametinib in high-risk resectable melanoma. Surprisingly, while toxic, neoadjuvant targeted therapy significantly improved RFS and led to early study closure.

    CAS  PubMed  Google Scholar 

  68. Long GV, Pw R, Lo S, Nieweg OE, Shannon KF, Gonzalez M, et al. Neoadjuvant dabrafenib combined with trametinib for resectable, stage IIIB-C, BRAFV600 mutation-positive melanoma (NeoCombi): a single-arm, open-label, single-centre, phase 2 trial. Lancet Oncol. 2019;20(7):961–71.

    CAS  PubMed  Google Scholar 

  69. Conry RM, Westbrook B, McKee S, Norwood T. Talimogene laherparepvec: first in class oncolytic virotherapy. Hum Vaccin Immunother. 2018;14(4):839–46.

    PubMed  PubMed Central  Google Scholar 

  70. Rehman H, Silk AW, Kane MP, Kaufman HL. Into the clinic: talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J Immunother Cancer. 2016;4(1):53.

    PubMed  PubMed Central  Google Scholar 

  71. Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–8.

    CAS  PubMed  Google Scholar 

  72. Andtbacka R, Dummer R, Gyorki DE, Berger AC, Conry R, Demidov LV, et al. Interim analysis of a randomized, open-label phase 2 study of talimogene laherparepvec (T-VEC) neoadjuvant treatment (neotx) plus surgery (surgx) vs surgx for resectable stage IIIB-IVM1a melanoma (MEL). J Clin Oncol. 2018;36(15_suppl):9508.

    Google Scholar 

  73. Tetzlaff M, Messina J, Stein J, Xu X, Amaria, Blank C, et al. Pathological assessment of resection specimens after neoadjuvant therapy for metastatic melanoma. Ann Oncol. 2018;29(8):1861–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Cottrell T, Thompson E, Forde P, Stein J, Duffield A, Anagnostou V, et al. Pathologic features of response to neoadjuvant anti-PD-1 in resected non-small cell lung carcinoma: a proposal for quantitative immune-related pathologic response criteria (irPRC). Ann Oncol. 2018;29:1853–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Suciu S, Eggermont AM, Lorigan P, Kirkwood JM, Markovic SN, Garbe C, et al. Relapse-free survival as a surrogate for overall survival in the evaluation of stage II–III melanoma adjuvant therapy. J Natl Cancer Inst. 2017;110(1):87–96.

    Google Scholar 

  76. Mieog J, van der Hage J, van de Velde C. Preoperative chemotherapy for women with operable breast cancer. Cochrane Database Syst Rev. 2007;2:CD005002.

    Google Scholar 

  77. Symmans FW, Wei C, Gould R, Yu X, Zhang Y, Liu M, et al. Long-term prognostic risk after neoadjuvant chemotherapy associated with residual cancer burden and breast cancer subtype. J Clin Oncol. 2017;35(10):1049–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Menzies AM, Rozeman EA, Amaria R, Huang A, Scolyer RA, Tetzlaff MT, et al. Pathological response and survival with neoadjuvant therapy in melanoma: a pooled analysis from the International Neoadjuvant Melanoma Consortium (INMC). J Clin Oncol. 2019;37(15_suppl):9503.

    Google Scholar 

Download references

Funding

This work was funded in part by an award (712463) from Harry J. Lloyd Charitable Trust (DD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diwakar Davar.

Ethics declarations

Conflict of Interest

Zahra Rahman Kelly declares that she has no conflict of interest.

Vikram C. Gorantla declares that he has no conflict of interest.

Diwakar Davar has received research funding from Merck, Bristol-Myers Squibb, Checkmate Pharmaceuticals, and Tesaro.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Melanoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelly, Z.R., Gorantla, V.C. & Davar, D. The Role of Neoadjuvant Therapy in Melanoma. Curr Oncol Rep 22, 80 (2020). https://doi.org/10.1007/s11912-020-00944-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-020-00944-5

Keywords

Navigation