Skip to main content
Log in

Sleep-Wake Control by Melanin-Concentrating Hormone (MCH) Neurons: a Review of Recent Findings

  • Sleep (M. Thorpy, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Melanin-concentrating hormone (MCH)–expressing neurons located in the lateral hypothalamus are considered as an integral component of sleep-wake circuitry. However, the precise role of MCH neurons in sleep-wake regulation has remained unclear, despite several years of research employing a wide range of techniques. We review recent data on this aspect, which are mostly inconsistent, and propose a novel role for MCH neurons in sleep regulation.

Recent Findings

While almost all studies using “gain-of-function” approaches show an increase in rapid eye movement sleep (or paradoxical sleep; PS), loss-of-function approaches have not shown reductions in PS. Similarly, the reported changes in wakefulness or non-rapid eye movement sleep (slow-wave sleep; SWS) with manipulation of the MCH system using conditional genetic methods are inconsistent.

Summary

Currently available data do not support a role for MCH neurons in spontaneous sleep-wake but imply a crucial role for them in orchestrating sleep-wake responses to changes in external and internal environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Kawauchi H, Kawazoe I, Tsubokawa M, Kishida M, Baker BI. Characterization of melanin-concentrating hormone in chum salmon pituitaries. Nature. 1983;305(5932):321–3.

    Article  CAS  PubMed  Google Scholar 

  2. Pissios P, Maratos-Flier E. Melanin-concentrating hormone: from fish skin to skinny mammals. Trends Endocrinol Metab. 2003;14(5):243–8.

    Article  CAS  PubMed  Google Scholar 

  3. MacNeil D. The role of melanin-concentrating hormone and its receptors in energy homeostasis. Front Endocrinol. 2013;4(49). https://doi.org/10.3389/fendo.2013.00049.

  4. Torterolo P, Lagos P, Monti JM. Melanin-concentrating hormone: a new sleep factor? Front Neurol. 2011;2:14. https://doi.org/10.3389/fneur.2011.00014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nahon JL, Presse F, Bittencourt JC, Sawchenko PE, Vale W. The rat melanin-concentrating hormone messenger ribonucleic acid encodes multiple putative neuropeptides coexpressed in the dorsolateral hypothalamus. Endocrinology. 1989;125(4):2056–65. https://doi.org/10.1210/endo-125-4-2056.

    Article  CAS  PubMed  Google Scholar 

  6. Bittencourt JC. Anatomical organization of the melanin-concentrating hormone peptide family in the mammalian brain. Gen Comp Endocrinol. 2011;172(2):185–97. https://doi.org/10.1016/j.ygcen.2011.03.028.

    Article  CAS  PubMed  Google Scholar 

  7. Rondini TA, Rodrigues Bde C, de Oliveira AP, Bittencourt JC, Elias CF. Melanin-concentrating hormone is expressed in the laterodorsal tegmental nucleus only in female rats. Brain Res Bull. 2007;74(1–3):21–8. https://doi.org/10.1016/j.brainresbull.2007.04.006.

    Article  CAS  PubMed  Google Scholar 

  8. Alvisi RD, Diniz GB, Da-Silva JM, Bittencourt JC, Felicio LF. Suckling-induced Fos activation and melanin-concentrating hormone immunoreactivity during late lactation. Life Sci. 2016;148:241–6. https://doi.org/10.1016/j.lfs.2016.02.038.

    Article  CAS  PubMed  Google Scholar 

  9. Rondini TA, Donato J Jr, Rodrigues Bde C, Bittencourt JC, Elias CF. Chemical identity and connections of medial preoptic area neurons expressing melanin-concentrating hormone during lactation. J Chem Neuroanat. 2010;39(1):51–62. https://doi.org/10.1016/j.jchemneu.2009.10.005.

    Article  CAS  PubMed  Google Scholar 

  10. Skofitsch G, Jacobowitz DM, Zamir N. Immunohistochemical localization of a melanin concentrating hormone-like peptide in the rat brain. Brain Res Bull. 1985;15(6):635–49. https://doi.org/10.1016/0361-9230(85)90213-8.

    Article  CAS  PubMed  Google Scholar 

  11. Cvetkovic V, Brischoux F, Jacquemard C, Fellmann D, Griffond B, Risold PY. Characterization of subpopulations of neurons producing melanin-concentrating hormone in the rat ventral diencephalon. J Neurochem. 2004;91(4):911–9. https://doi.org/10.1111/j.1471-4159.2004.02776.x.

    Article  CAS  PubMed  Google Scholar 

  12. Noble EE, Hahn JD, Konanur VR, Hsu TM, Page SJ, Cortella AM, et al. Control of feeding behavior by cerebral ventricular volume transmission of melanin-concentrating hormone. Cell Metab. 2018;28(1):55–68 e7. https://doi.org/10.1016/j.cmet.2018.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hill J, Duckworth M, Murdock P, Rennie G, Sabido-David C, Ames RS, et al. Molecular cloning and functional characterization of MCH2, a novel human MCH receptor. J Biol Chem. 2001;276(23):20125–9. https://doi.org/10.1074/jbc.M102068200.

    Article  CAS  PubMed  Google Scholar 

  14. Kokkotou E, Moss AC, Torres D, Karagiannides I, Cheifetz A, Liu S, et al. Melanin-concentrating hormone as a mediator of intestinal inflammation. Proc Natl Acad Sci U S A. 2008;105(30):10613–8. https://doi.org/10.1073/pnas.0804536105.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tan CP, Sano H, Iwaasa H, Pan J, Sailer AW, Hreniuk DL, et al. Melanin-concentrating hormone receptor subtypes 1 and 2: species-specific gene expression. Genomics. 2002;79(6):785–92. https://doi.org/10.1006/geno.2002.6771.

    Article  CAS  PubMed  Google Scholar 

  16. •• Vetrivelan R, Kong D, Ferrari LL, Arrigoni E, Madara JC, Bandaru SS, et al. Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience. 2016;336:102–13. https://doi.org/10.1016/j.neuroscience.2016.08.046First chemogenetic study to show the selective PS-promoting role of MCH neurons. In addition, this study investiagted the changes in sleep-wake locomotor activity, body temperature and metabolic functoons after acute deletion of MCH neurons.

    Article  CAS  PubMed  Google Scholar 

  17. Izawa S, Chowdhury S, Miyazaki T, Mukai Y, Ono D, Inoue R, et al. REM sleep-active MCH neurons are involved in forgetting hippocampus-dependent memories. Science. 2019;365(6459):1308–13. https://doi.org/10.1126/science.aax9238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature. 1998;396(6712):670–4. https://doi.org/10.1038/25341.

    Article  CAS  PubMed  Google Scholar 

  19. Diniz GB, Bittencourt JC. The melanin-concentrating hormone as an integrative peptide driving motivated behaviors. Front Syst Neurosci. 2017;11:32. https://doi.org/10.3389/fnsys.2017.00032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nahon JL. The melanocortins and melanin-concentrating hormone in the central regulation of feeding behavior and energy homeostasis. C R Biol. 2006;329(8):623–38; discussion 53-5. https://doi.org/10.1016/j.crvi.2006.03.021.

    Article  CAS  PubMed  Google Scholar 

  21. Pissios P, Bradley RL, Maratos-Flier E. Expanding the scales: the multiple roles of MCH in regulating energy balance and other biological functions. Endocr Rev. 2006;27(6):606–20. https://doi.org/10.1210/er.2006-0021.

    Article  CAS  PubMed  Google Scholar 

  22. Borowsky B, Durkin MM, Ogozalek K, Marzabadi MR, DeLeon J, Lagu B, et al. Antidepressant, anxiolytic and anorectic effects of a melanin-concentrating hormone-1 receptor antagonist. Nat Med. 2002;8(8):825–30. https://doi.org/10.1038/nm741.

    Article  CAS  PubMed  Google Scholar 

  23. Le Barillier L, Leger L, Luppi PH, Fort P, Malleret G, Salin PA. Genetic deletion of melanin-concentrating hormone neurons impairs hippocampal short-term synaptic plasticity and hippocampal-dependent forms of short-term memory. Hippocampus. 2015;25(11):1361–73. https://doi.org/10.1002/hipo.22442.

    Article  CAS  PubMed  Google Scholar 

  24. Adamantidis A, de Lecea L. Physiological arousal: a role for hypothalamic systems. Cell Mol Life Sci. 2008;65(10):1475–88. https://doi.org/10.1007/s00018-008-7521-8.

    Article  CAS  PubMed  Google Scholar 

  25. Naganuma F, Kroeger D, Bandaru SS, Absi G, Madara JC, Vetrivelan R. Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia. PLoS Biol. 2019;17(3):e3000172. https://doi.org/10.1371/journal.pbio.3000172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bittencourt JC, Presse F, Arias C, Peto C, Vaughan J, Nahon JL, et al. The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J Comp Neurol. 1992;319(2):218–45. https://doi.org/10.1002/cne.903190204.

    Article  CAS  PubMed  Google Scholar 

  27. Verret L, Goutagny R, Fort P, Cagnon L, Salvert D, Leger L, et al. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci. 2003;4:19. https://doi.org/10.1186/1471-2202-4-19.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Monti JM, Torterolo P, Jantos H, Lagos P. Microinjection of the melanin-concentrating hormone into the sublaterodorsal tegmental nucleus inhibits REM sleep in the rat. Neurosci Lett. 2016;630:66–9. https://doi.org/10.1016/j.neulet.2016.07.035.

    Article  CAS  PubMed  Google Scholar 

  29. Monti JM, Lagos P, Jantos H, Torterolo P. Increased REM sleep after intra-locus coeruleus nucleus microinjection of melanin-concentrating hormone (MCH) in the rat. Prog Neuro-Psychopharmacol Biol Psychiatry. 2015;56:185–8. https://doi.org/10.1016/j.pnpbp.2014.09.003.

    Article  CAS  Google Scholar 

  30. Lagos P, Torterolo P, Jantos H, Chase MH, Monti JM. Effects on sleep of melanin-concentrating hormone (MCH) microinjections into the dorsal raphe nucleus. Brain Res. 2009;1265:103–10. https://doi.org/10.1016/j.brainres.2009.02.010.

    Article  CAS  PubMed  Google Scholar 

  31. Lagos P, Monti JM, Jantos H, Torterolo P. Microinjection of the melanin-concentrating hormone into the lateral basal forebrain increases REM sleep and reduces wakefulness in the rat. Life Sci. 2012;90(23–24):895–9. https://doi.org/10.1016/j.lfs.2012.04.019.

    Article  CAS  PubMed  Google Scholar 

  32. Benedetto L, Rodriguez-Servetti Z, Lagos P, D'Almeida V, Monti JM, Torterolo P. Microinjection of melanin concentrating hormone into the lateral preoptic area promotes non-REM sleep in the rat. Peptides. 2013;39:11–5. https://doi.org/10.1016/j.peptides.2012.10.005.

    Article  CAS  PubMed  Google Scholar 

  33. Ahnaou A, Drinkenburg WH, Bouwknecht JA, Alcazar J, Steckler T, Dautzenberg FM. Blocking melanin-concentrating hormone MCH1 receptor affects rat sleep-wake architecture. Eur J Pharmacol. 2008;579(1–3):177–88. https://doi.org/10.1016/j.ejphar.2007.10.017.

    Article  CAS  PubMed  Google Scholar 

  34. Ahnaou A, Dautzenberg FM, Huysmans H, Steckler T, Drinkenburg WH. Contribution of melanin-concentrating hormone (MCH1) receptor to thermoregulation and sleep stabilization: evidence from MCH1 (−/−) mice. Behav Brain Res. 2011;218(1):42–50. https://doi.org/10.1016/j.bbr.2010.11.019.

    Article  CAS  PubMed  Google Scholar 

  35. Able SL, Ivarsson M, Fish RL, Clarke TL, McCourt C, Duckworth JM, et al. Localisation of melanin-concentrating hormone receptor 1 in rat brain and evidence that sleep parameters are not altered despite high central receptor occupancy. Eur J Pharmacol. 2009;616(1–3):101–6. https://doi.org/10.1016/j.ejphar.2009.06.009.

    Article  CAS  PubMed  Google Scholar 

  36. Willie JT, Sinton CM, Maratos-Flier E, Yanagisawa M. Abnormal response of melanin-concentrating hormone deficient mice to fasting: hyperactivity and rapid eye movement sleep suppression. Neuroscience. 2008;156(4):819–29. https://doi.org/10.1016/j.neuroscience.2008.08.048.

    Article  CAS  PubMed  Google Scholar 

  37. Tye KM, Deisseroth K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci. 2012;13(4):251–66. https://doi.org/10.1038/nrn3171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. •• Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R, et al. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci. 2013;16(11):1637–43. https://doi.org/10.1038/nn.3522First optogenetic study showing selective PS-promoting role of MCH neurons and identifying the MCH-TMN circuit involved in extending PS bouts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsunematsu T, Ueno T, Tabuchi S, Inutsuka A, Tanaka KF, Hasuwa H, et al. Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J Neurosci. 2014;34(20):6896–909. https://doi.org/10.1523/jneurosci.5344-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Blanco-Centurion C, Liu M, Konadhode RP, Zhang X, Pelluru D, van den Pol AN, et al. Optogenetic activation of melanin-concentrating hormone neurons increases non-rapid eye movement and rapid eye movement sleep during the night in rats. Eur J Neurosci. 2016;44(10):2846–57. https://doi.org/10.1111/ejn.13410.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Konadhode RR, Pelluru D, Blanco-Centurion C, Zayachkivsky A, Liu M, Uhde T, et al. Optogenetic stimulation of MCH neurons increases sleep. J Neurosci. 2013;33(25):10257–63. https://doi.org/10.1523/jneurosci.1225-13.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tyssowski KM, Gray JM. Blue light induces neuronal-activity-regulated gene expression in the absence of optogenetic proteins. BioRxiv. 2019. https://doi.org/10.1101/572370.

  43. Owen SF, Liu MH, Kreitzer AC. Thermal constraints on in vivo optogenetic manipulations. Nat Neurosci. 2019;22(7):1061–5. https://doi.org/10.1038/s41593-019-0422-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Arrigoni E, Saper CB. What optogenetic stimulation is telling us (and failing to tell us) about fast neurotransmitters and neuromodulators in brain circuits for wake-sleep regulation. Curr Opin Neurobiol. 2014;29:165–71. https://doi.org/10.1016/j.conb.2014.07.016.

    Article  CAS  PubMed  Google Scholar 

  45. Studholme KM, Gompf HS, Morin LP. Brief light stimulation during the mouse nocturnal activity phase simultaneously induces a decline in core temperature and locomotor activity followed by EEG-determined sleep. Am J Physiol Regul Integr Comp Physiol. 2013;304(6):R459–71. https://doi.org/10.1152/ajpregu.00460.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. •• Varin C, Luppi PH, Fort P. Melanin-concentrating hormone-expressing neurons adjust slow-wave sleep dynamics to catalyze paradoxical (REM) sleep. Sleep. 2018;41(6). https://doi.org/10.1093/sleep/zsy068This chemogenetic study demonstarted that MCH neurons may deepen SWS to facilitate SWS-PS transitions.

  47. Roth BL. DREADDs for neuroscientists. Neuron. 2016;89(4):683–94. https://doi.org/10.1016/j.neuron.2016.01.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. •• Naganuma F, Bandaru SS, Absi G, Mahoney CE, Scammell TE, Vetrivelan R. Melanin-concentrating hormone neurons contribute to dysregulation of rapid eye movement sleep in narcolepsy. Neurobiol Dis. 2018;120:12–20. https://doi.org/10.1016/j.nbd.2018.08.012This study first showed that MCHR1 antagonism prevented the cataplexy in a narcoleptic mouse model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Parmeggiani PL, Rabini C. Sleep and environmental temperature. Arch Ital Biol. 1970;108(2):369–87.

    CAS  PubMed  Google Scholar 

  50. Rampin C, Cespuglio R, Chastrette N, Jouvet M. Immobilisation stress induces a paradoxical sleep rebound in rat. Neurosci Lett. 1991;126(2):113–8.

    Article  CAS  PubMed  Google Scholar 

  51. Pawlyk AC, Morrison AR, Ross RJ, Brennan FX. Stress-induced changes in sleep in rodents: models and mechanisms. Neurosci Biobehav Rev. 2008;32(1):99–117. https://doi.org/10.1016/j.neubiorev.2007.06.001.

    Article  PubMed  Google Scholar 

  52. Komagata N, Latifi B, Rusterholz T, Bassetti CLA, Adamantidis A, Schmidt MH. Dynamic REM sleep modulation by ambient temperature and the critical role of the melanin-concentrating hormone system. Curr Biol. 2019;29(12):1976–87 e4. https://doi.org/10.1016/j.cub.2019.05.009.

    Article  CAS  PubMed  Google Scholar 

  53. Varin C, Arthaud S, Salvert D, Gay N, Libourel PA, Luppi PH, et al. Sleep architecture and homeostasis in mice with partial ablation of melanin-concentrating hormone neurons. Behav Brain Res. 2016;298(Pt B):100–10. https://doi.org/10.1016/j.bbr.2015.10.051.

    Article  CAS  PubMed  Google Scholar 

  54. Gonzalez JA, Iordanidou P, Strom M, Adamantidis A, Burdakov D. Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks. Nat Commun. 2016;7:11395. https://doi.org/10.1038/ncomms11395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. •• Kroeger D, Bandaru SS, Madara JC, Vetrivelan R. Ventrolateral periaqueductal gray mediates rapid eye movement sleep regulation by melanin-concentrating hormone neurons. Neuroscience. 2019;406:314–24. https://doi.org/10.1016/j.neuroscience.2019.03.020This artcile demnostrated that MCH neurons promote PS by inhibiting the vlPAG, the PS-suppressing region located in the midbrain.

    Article  CAS  PubMed  Google Scholar 

  56. •• Naganuma F, Bandaru SS, Absi G, Chee MJ, Vetrivelan R. Melanin-concentrating hormone neurons promote rapid eye movement sleep independent of glutamate release. Brain Struct Funct. 2019;224(1):99–110. https://doi.org/10.1007/s00429-018-1766-2This article confirmed that almost all MCH neurons are glutamtergic, but this neurotransmitter is dispensible for PS regulation.

    Article  CAS  PubMed  Google Scholar 

  57. Fujimoto M, Fukuda S, Sakamoto H, Takata J, Sawamura S. Neuropeptide glutamic acid-isoleucine (NEI)-induced paradoxical sleep in rats. Peptides. 2017;87:28–33. https://doi.org/10.1016/j.peptides.2016.11.007.

    Article  CAS  PubMed  Google Scholar 

  58. Hanriot L, Camargo N, Courau AC, Leger L, Luppi PH, Peyron C. Characterization of the melanin-concentrating hormone neurons activated during paradoxical sleep hypersomnia in rats. J Comp Neurol. 2007;505(2):147–57. https://doi.org/10.1002/cne.21482.

    Article  PubMed  Google Scholar 

  59. Jego S, Salvert D, Renouard L, Mori M, Goutagny R, Luppi PH, et al. Tuberal hypothalamic neurons secreting the satiety molecule Nesfatin-1 are critically involved in paradoxical (REM) sleep homeostasis. PLoS One. 2012;7(12):e52525. https://doi.org/10.1371/journal.pone.0052525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mickelsen LE, Bolisetty M, Chimileski BR, Fujita A, Beltrami EJ, Costanzo JT, et al. Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons. Nat Neurosci. 2019;22(4):642–56. https://doi.org/10.1038/s41593-019-0349-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. •• Mickelsen LE, FWt K, Chimileski BR, Fujita A, Norris C, Chen K, et al. Neurochemical heterogeneity among lateral hypothalamic hypocretin/orexin and melanin-concentrating hormone neurons identified through single-cell gene expression analysis. eNeuro. 2017;4(5). https://doi.org/10.1523/eneuro.0013-17.2017This study revealed the neurotransmitters, vesicular transporters and other signalling factors expressed in MCH neurons.

  62. Saito Y, Cheng M, Leslie FM, Civelli O. Expression of the melanin-concentrating hormone (MCH) receptor mRNA in the rat brain. J Comp Neurol. 2001;435(1):26–40.

    Article  CAS  PubMed  Google Scholar 

  63. Chee MJ, Arrigoni E, Maratos-Flier E. Melanin-concentrating hormone neurons release glutamate for feedforward inhibition of the lateral septum. J Neurosci. 2015;35(8):3644–51. https://doi.org/10.1523/jneurosci.4187-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Elias CF, Lee CE, Kelly JF, Ahima RS, Kuhar M, Saper CB, et al. Characterization of CART neurons in the rat and human hypothalamus. J Comp Neurol. 2001;432(1):1–19.

    Article  CAS  PubMed  Google Scholar 

  65. Harthoorn LF, Sane A, Nethe M, Van Heerikhuize JJ. Multi-transcriptional profiling of melanin-concentrating hormone and orexin-containing neurons. Cell Mol Neurobiol. 2005;25(8):1209–23. https://doi.org/10.1007/s10571-005-8184-8.

    Article  PubMed  Google Scholar 

  66. Lu J, Sherman D, Devor M, Saper CB. A putative flip-flop switch for control of REM sleep. Nature. 2006;441(7093):589–94. https://doi.org/10.1038/nature04767.

    Article  CAS  PubMed  Google Scholar 

  67. Blanco-Centurion C, Gerashchenko D, Shiromani PJ. Effects of saporin-induced lesions of three arousal populations on daily levels of sleep and wake. J Neurosci. 2007;27(51):14041–8. https://doi.org/10.1523/jneurosci.3217-07.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fuller P, Sherman D, Pedersen NP, Saper CB, Lu J. Reassessment of the structural basis of the ascending arousal system. J Comp Neurol. 2011;519(5):933–56. https://doi.org/10.1002/cne.22559.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kaur S, Wang JL, Ferrari L, Thankachan S, Kroeger D, Venner A, et al. A genetically defined circuit for arousal from sleep during hypercapnia. Neuron. 2017;96(5):1153–67 e5. https://doi.org/10.1016/j.neuron.2017.10.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Apergis-Schoute J, Iordanidou P, Faure C, Jego S, Schone C, Aitta-Aho T, et al. Optogenetic evidence for inhibitory signaling from orexin to MCH neurons via local microcircuits. J Neurosci. 2015;35(14):5435–41. https://doi.org/10.1523/jneurosci.5269-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rao Y, Lu M, Ge F, Marsh DJ, Qian S, Wang AH, et al. Regulation of synaptic efficacy in hypocretin/orexin-containing neurons by melanin concentrating hormone in the lateral hypothalamus. J Neurosci. 2008;28(37):9101–10. https://doi.org/10.1523/jneurosci.1766-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. van den Pol AN, Acuna-Goycolea C, Clark KR, Ghosh PK. Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection. Neuron. 2004;42(4):635–52. https://doi.org/10.1016/s0896-6273(04)00251-x.

    Article  PubMed  Google Scholar 

  73. Hassani OK, Lee MG, Jones BE. Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proc Natl Acad Sci U S A. 2009;106(7):2418–22. https://doi.org/10.1073/pnas.0811400106.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature. 2007;450(7168):420–4. https://doi.org/10.1038/nature06310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Choudhary RC, Khanday MA, Mitra A, Mallick BN. Perifornical orexinergic neurons modulate REM sleep by influencing locus coeruleus neurons in rats. Neuroscience. 2014;279:33–43. https://doi.org/10.1016/j.neuroscience.2014.08.017.

    Article  CAS  PubMed  Google Scholar 

  76. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98(4):437–51.

    Article  CAS  PubMed  Google Scholar 

  77. Luppi PH, Clement O, Sapin E, Peyron C, Gervasoni D, Leger L, et al. Brainstem mechanisms of paradoxical (REM) sleep generation. Pflugers Arch. 2012;463(1):43–52. https://doi.org/10.1007/s00424-011-1054-y.

    Article  CAS  PubMed  Google Scholar 

  78. Vetrivelan R, Lu J. Neural circuitry regulating REM sleep and its implication in REM sleep behavior disorder. In: Schenck C, Högl B AV, editors. Rapid-eye-movement sleep behavior disorder. Cham: Springer; 2019. p. 559–577.

  79. Vetrivelan R, Chang C, Lu J. Muscle tone regulation during REM sleep: neural circuitry and clinical significance. Arch Ital Biol. 2011;149(4):348–66. https://doi.org/10.4449/aib.v149i4.1272.

    Article  CAS  PubMed  Google Scholar 

  80. Clement O, Sapin E, Libourel PA, Arthaud S, Brischoux F, Fort P, et al. The lateral hypothalamic area controls paradoxical (REM) sleep by means of descending projections to brainstem GABAergic neurons. J Neurosci. 2012;32(47):16763–74. https://doi.org/10.1523/jneurosci.1885-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee ML, Swanson BE, de la Iglesia HO. Circadian timing of REM sleep is coupled to an oscillator within the dorsomedial suprachiasmatic nucleus. Curr Biol. 2009;19(10):848–52. https://doi.org/10.1016/j.cub.2009.03.051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cambras T, Weller JR, Angles-Pujoras M, Lee ML, Christopher A, Diez-Noguera A, et al. Circadian desynchronization of core body temperature and sleep stages in the rat. Proc Natl Acad Sci U S A. 2007;104(18):7634–9. https://doi.org/10.1073/pnas.0702424104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kantor S, Mochizuki T, Janisiewicz AM, Clark E, Nishino S, Scammell TE. Orexin neurons are necessary for the circadian control of REM sleep. Sleep. 2009;32(9):1127–34.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Pintwala S, Peever J. Circuit mechanisms of sleepiness and cataplexy in narcolepsy. Curr Opin Neurobiol. 2017;44:50–8. https://doi.org/10.1016/j.conb.2017.02.010.

    Article  CAS  PubMed  Google Scholar 

  85. Mahowald MW, Schenck CH, Bornemann MA. Pathophysiologic mechanisms in REM sleep behavior disorder. Curr Neurol Neurosci Rep. 2007;7(2):167–72.

    Article  PubMed  Google Scholar 

  86. Schenck CH, Mahowald MW. REM sleep behavior disorder: clinical, developmental, and neuroscience perspectives 16 years after its formal identification in SLEEP. Sleep. 2002;25(2):120–38.

    Article  PubMed  Google Scholar 

  87. Luppi PH, Clement O, Sapin E, Gervasoni D, Peyron C, Leger L, et al. The neuronal network responsible for paradoxical sleep and its dysfunctions causing narcolepsy and rapid eye movement (REM) behavior disorder. Sleep Med Rev. 2011;15(3):153–63. https://doi.org/10.1016/j.smrv.2010.08.002.

    Article  PubMed  Google Scholar 

  88. Scammell TE. Narcolepsy. N Engl J Med. 2015;373(27):2654–62. https://doi.org/10.1056/NEJMra1500587.

    Article  CAS  PubMed  Google Scholar 

  89. Sakurai T. Orexin deficiency and narcolepsy. Curr Opin Neurobiol. 2013;23(5):760–6. https://doi.org/10.1016/j.conb.2013.04.007.

    Article  CAS  PubMed  Google Scholar 

  90. Burgess CR, Scammell TE. Narcolepsy: neural mechanisms of sleepiness and cataplexy. J Neurosci. 2012;32(36):12305–11. https://doi.org/10.1523/jneurosci.2630-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dauvilliers Y, Siegel JM, Lopez R, Torontali ZA, Peever JH. Cataplexy--clinical aspects, pathophysiology and management strategy. Nat Rev Neurol. 2014;10(7):386–95. https://doi.org/10.1038/nrneurol.2014.97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Scammell TE. The neurobiology, diagnosis, and treatment of narcolepsy. Ann Neurol. 2003;53(2):154–66. https://doi.org/10.1002/ana.10444.

    Article  PubMed  Google Scholar 

  93. Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000;27(3):469–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Beuckmann CT, Sinton CM, Williams SC, Richardson JA, Hammer RE, Sakurai T, et al. Expression of a poly-glutamine-ataxin-3 transgene in orexin neurons induces narcolepsy-cataplexy in the rat. J Neurosci. 2004;24(18):4469–77. https://doi.org/10.1523/JNEUROSCI.5560-03.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Clark EL, Baumann CR, Cano G, Scammell TE, Mochizuki T. Feeding-elicited cataplexy in orexin knockout mice. Neuroscience. 2009;161(4):970–7. https://doi.org/10.1016/j.neuroscience.2009.04.007.

    Article  CAS  PubMed  Google Scholar 

  96. Burgess CR, Oishi Y, Mochizuki T, Peever JH, Scammell TE. Amygdala lesions reduce cataplexy in orexin knock-out mice. J Neurosci. 2013;33(23):9734–42. https://doi.org/10.1523/jneurosci.5632-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gerashchenko D, Blanco-Centurion C, Greco MA, Shiromani PJ. Effects of lateral hypothalamic lesion with the neurotoxin hypocretin-2-saporin on sleep in long-Evans rats. Neuroscience. 2003;116(1):223–35.

    Article  CAS  PubMed  Google Scholar 

  98. •• Hung CJ, Ono D, Kilduff TS, Yamanaka A. Dual orexin and MCH neuron-ablated mice display severe sleep attacks and cataplexy. Elife. 2020;9. https://doi.org/10.7554/eLife.54275This article showed that loss of MCH neurons may worsen cataplexy, thereby suggested that MCH neurons may play anticataplectic role.

  99. Adrien J. Neurobiological bases for the relation between sleep and depression. Sleep Med Rev. 2002;6(5):341–51.

    Article  PubMed  Google Scholar 

  100. Palagini L, Baglioni C, Ciapparelli A, Gemignani A, Riemann D. REM sleep dysregulation in depression: state of the art. Sleep Med Rev. 2013;17(5):377–90. https://doi.org/10.1016/j.smrv.2012.11.001.

    Article  PubMed  Google Scholar 

  101. Garcia-Fuster MJ, Parks GS, Clinton SM, Watson SJ, Akil H, Civelli O. The melanin-concentrating hormone (MCH) system in an animal model of depression-like behavior. Eur Neuropsychopharmacol. 2012;22(8):607–13. https://doi.org/10.1016/j.euroneuro.2011.12.001.

    Article  CAS  PubMed  Google Scholar 

  102. Georgescu D, Sears RM, Hommel JD, Barrot M, Bolanos CA, Marsh DJ, et al. The hypothalamic neuropeptide melanin-concentrating hormone acts in the nucleus accumbens to modulate feeding behavior and forced-swim performance. J Neurosci. 2005;25(11):2933–40. https://doi.org/10.1523/jneurosci.1714-04.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lagos P, Urbanavicius J, Scorza MC, Miraballes R, Torterolo P. Depressive-like profile induced by MCH microinjections into the dorsal raphe nucleus evaluated in the forced swim test. Behav Brain Res. 2011;218(2):259–66. https://doi.org/10.1016/j.bbr.2010.10.035.

    Article  CAS  PubMed  Google Scholar 

  104. Shimazaki T, Yoshimizu T, Chaki S. Melanin-concentrating hormone MCH1 receptor antagonists: a potential new approach to the treatment of depression and anxiety disorders. CNS Drugs. 2006;20(10):801–11.

    Article  CAS  PubMed  Google Scholar 

  105. Szklo-Coxe M, Young T, Finn L, Mignot E. Depression: relationships to sleep paralysis and other sleep disturbances in a community sample. J Sleep Res. 2007;16(3):297–312. https://doi.org/10.1111/j.1365-2869.2007.00600.x.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ito M, Gomori A, Ishihara A, Oda Z, Mashiko S, Matsushita H, et al. Characterization of MCH-mediated obesity in mice. Am J Physiol Endocrinol Metab. 2003;284(5):E940–5. https://doi.org/10.1152/ajpendo.00529.2002.

    Article  CAS  PubMed  Google Scholar 

  107. Hausen AC, Ruud J, Jiang H, Hess S, Varbanov H, Kloppenburg P, et al. Insulin-dependent activation of MCH neurons impairs Locomotor activity and insulin sensitivity in obesity. Cell Rep. 2016;17(10):2512–21. https://doi.org/10.1016/j.celrep.2016.11.030.

    Article  CAS  PubMed  Google Scholar 

  108. Whiddon BB, Palmiter RD. Ablation of neurons expressing melanin-concentrating hormone (MCH) in adult mice improves glucose tolerance independent of MCH signaling. J Neurosci. 2013;33(5):2009–16. https://doi.org/10.1523/jneurosci.3921-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Marsh DJ, Weingarth DT, Novi DE, Chen HY, Trumbauer ME, Chen AS, et al. Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proc Natl Acad Sci U S A. 2002;99(5):3240–5. https://doi.org/10.1073/pnas.052706899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dilsiz P, Aklan I, Sayar Atasoy N, Yavuz Y, Filiz G, Koksalar F, et al. MCH neuron dependent reward and feeding. Neuroendocrinology. 2019;110:258–70. https://doi.org/10.1159/000501234.

    Article  CAS  PubMed  Google Scholar 

  111. Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ, et al. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature. 1996;380(6571):243–7. https://doi.org/10.1038/380243a0.

    Article  CAS  PubMed  Google Scholar 

  112. Gomori A, Ishihara A, Ito M, Mashiko S, Matsushita H, Yumoto M, et al. Chronic intracerebroventricular infusion of MCH causes obesity in mice. Melanin-concentrating hormone. Am J Physiol Endocrinol Metab. 2003;284(3):E583–8. https://doi.org/10.1152/ajpendo.00350.2002.

    Article  CAS  PubMed  Google Scholar 

  113. Kokkotou E, Jeon JY, Wang X, Marino FE, Carlson M, Trombly DJ, et al. Mice with MCH ablation resist diet-induced obesity through strain-specific mechanisms. Am J Physiol Regul Integr Comp Physiol. 2005;289(1):R117–24. https://doi.org/10.1152/ajpregu.00861.2004.

    Article  CAS  PubMed  Google Scholar 

  114. Burdakov D, Luckman SM, Verkhratsky A. Glucose-sensing neurons of the hypothalamus. Philos Trans R Soc Lond Ser B Biol Sci. 2005;360(1464):2227–35. https://doi.org/10.1098/rstb.2005.1763.

    Article  CAS  Google Scholar 

  115. Kong D, Vong L, Parton LE, Ye C, Tong Q, Hu X, et al. Glucose stimulation of hypothalamic MCH neurons involves K(ATP) channels, is modulated by UCP2, and regulates peripheral glucose homeostasis. Cell Metab. 2010;12(5):545–52. https://doi.org/10.1016/j.cmet.2010.09.013.

    Article  CAS  PubMed  Google Scholar 

  116. Ito M, Ishihara A, Gomori A, Matsushita H, Ito M, Metzger JM, et al. Mechanism of the anti-obesity effects induced by a novel melanin-concentrating hormone 1-receptor antagonist in mice. Br J Pharmacol. 2010;159(2):374–83. https://doi.org/10.1111/j.1476-5381.2009.00536.x.

    Article  CAS  PubMed  Google Scholar 

  117. Pereira-da-Silva M, Torsoni MA, Nourani HV, Augusto VD, Souza CT, Gasparetti AL, et al. Hypothalamic melanin-concentrating hormone is induced by cold exposure and participates in the control of energy expenditure in rats. Endocrinology. 2003;144(11):4831–40. https://doi.org/10.1210/en.2003-0243.

    Article  CAS  PubMed  Google Scholar 

  118. Segal-Lieberman G, Bradley RL, Kokkotou E, Carlson M, Trombly DJ, Wang X, et al. Melanin-concentrating hormone is a critical mediator of the leptin-deficient phenotype. Proc Natl Acad Sci U S A. 2003;100(17):10085–90. https://doi.org/10.1073/pnas.1633636100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Adamantidis A, de Lecea L. A role for melanin-concentrating hormone in learning and memory. Peptides. 2009;30(11):2066–70. https://doi.org/10.1016/j.peptides.2009.06.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chee MJ, Pissios P, Maratos-Flier E. Neurochemical characterization of neurons expressing melanin-concentrating hormone receptor 1 in the mouse hypothalamus. J Comp Neurol. 2013;521(10):2208–34. https://doi.org/10.1002/cne.23273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pachoud B, Adamantidis A, Ravassard P, Luppi PH, Grisar T, Lakaye B, et al. Major impairments of glutamatergic transmission and long-term synaptic plasticity in the hippocampus of mice lacking the melanin-concentrating hormone receptor-1. J Neurophysiol. 2010;104(3):1417–25. https://doi.org/10.1152/jn.01052.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Varas M, Perez M, Ramirez O, de Barioglio SR. Melanin concentrating hormone increase hippocampal synaptic transmission in the rat. Peptides. 2002;23(1):151–5. https://doi.org/10.1016/s0196-9781(01)00591-5.

    Article  CAS  PubMed  Google Scholar 

  123. Kosse C, Burdakov D. Natural hypothalamic circuit dynamics underlying object memorization. Nat Commun. 2019;10(1):2505. https://doi.org/10.1038/s41467-019-10484-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nair SG, Adams-Deutsch T, Pickens CL, Smith DG, Shaham Y. Effects of the MCH1 receptor antagonist SNAP 94847 on high-fat food-reinforced operant responding and reinstatement of food seeking in rats. Psychopharmacology. 2009;205(1):129–40. https://doi.org/10.1007/s00213-009-1523-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sclafani A, Adamantidis A, Ackroff K. MCH receptor deletion does not impair glucose-conditioned flavor preferences in mice. Physiol Behav. 2016;163:239–44. https://doi.org/10.1016/j.physbeh.2016.05.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pissios P, Frank L, Kennedy AR, Porter DR, Marino FE, Liu FF, et al. Dysregulation of the mesolimbic dopamine system and reward in MCH−/− mice. Biol Psychiatry. 2008;64(3):184–91. https://doi.org/10.1016/j.biopsych.2007.12.011.

    Article  CAS  PubMed  Google Scholar 

  127. Sakamaki R, Uemoto M, Inui A, Asakawa A, Ueno N, Ishibashi C, et al. Melanin-concentrating hormone enhances sucrose intake. Int J Mol Med. 2005;15(6):1033–9.

    CAS  PubMed  Google Scholar 

  128. Dilsiz P, Aklan I, Sayar Atasoy N, Yavuz Y, Filiz G, Koksalar F, et al. MCH neuron activity is sufficient for reward and reinforces feeding. Neuroendocrinology. 2020;110(3–4):258–70. https://doi.org/10.1159/000501234.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Clifford Saper and Thomas Scammell for their inputs on the first draft of the manuscript. We thank NIH (R01NS088482) and Harvard Brain Science Initiative (Bipolar Disorder Seed Grant) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramalingam Vetrivelan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Sleep

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandaru, S.S., Khanday, M.A., Ibrahim, N. et al. Sleep-Wake Control by Melanin-Concentrating Hormone (MCH) Neurons: a Review of Recent Findings. Curr Neurol Neurosci Rep 20, 55 (2020). https://doi.org/10.1007/s11910-020-01075-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11910-020-01075-x

Keywords

Navigation