Skip to main content
Log in

Prognostic Value of EEG in Patients after Cardiac Arrest—An Updated Review

  • Epilepsy (CW Bazil, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This paper aims to review and summarize the key contributions of EEG to prognostication after cardiac arrest (CA).

Recent Findings

While there are more EEG patterns predicting poor than good outcome, even EEG patterns previously considered to be “very malignant” may result in survival with a meaningful neurological outcome depending on their underlying etiology as well as the continuity and reactivity of the EEG background. Regardless of the potentially confounding factors, EEG patterns are highly specific with a relatively low false-positive rate. The development of more complex and comprehensive approaches to quantitative EEG analysis could help improve the prognostic value of EEG, but this approach has its own limitations. Seizures and status epilepticus in the setting of CA predict poor outcomes, but it is not clear whether treating them prevents additional brain damage and results in improved outcome.

Summary

Either continuous EEG or frequent intermittent EEGs should be obtained within the first 12–24 h of return of spontaneous circulation in order to capture highly dynamic and prognostic patterns. Even though EEG has high predictive value for outcomes after cardiac arrest, it should not be the only prognostic tool. Rather, to improve prognostication, EEG should be used in combination with the neurological examination and other ancillary tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131:e29–322.

    Article  PubMed  Google Scholar 

  2. Gray WA, Capone RJ, Most AS. Unsuccessful emergency medical resuscitation—are continued efforts in the emergency department justified. N Engl J Med. 1991;325:1393–8.

    Article  CAS  PubMed  Google Scholar 

  3. Taccone FS, Baar I, De Deyne C, et al. Neuroprognostication after adult cardiac arrest treated with targeted temperature management: task force for Belgian recommendations. Acta Neurol Belg. 2017;117:3–15.

    Article  PubMed  Google Scholar 

  4. Levy DE, Caronna JJ, Singer BH, Lapinski RH, Frydman H, Plum F. Predicting outcome from hypoxic–ischemic coma. JAMA. 1985;253:1420–6.

    Article  CAS  PubMed  Google Scholar 

  5. Khawaja AM, Wang G, Cutter GR, Szaflarski JP. Continuous electroencephalography (cEEG) monitoring and outcomes of critically ill patients. Med Sci Monit. 2017;23:649–58.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kilbride RD, Costello DJ, Chiappa KH. How seizure detection by continuous electroencephalographic monitoring affects the prescribing of antiepileptic medications. Arch Neurol. 2009;66:723–8.

    Article  PubMed  Google Scholar 

  7. Ney JP, van der Goes DN, Nuwer MR, Nelson L, Eccher MA. Continuous and routine EEG in intensive care: utilization and outcomes, United States 2005–2009. Neurology. 2013;81:2002–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sandroni C, Cariou A, Cavallaro F, Cronberg T, Friberg H, Hoedemaekers C, et al. Prognostication in comatose survivors of cardiac arrest: an advisory statement from the European Resuscitation Council and the European Society of Intensive Care Medicine. Resuscitation. 2014;85:1779–89.

    Article  PubMed  Google Scholar 

  9. Wijdicks EF, Hijdra A, Young GB, Bassetti CL, Wiebe S, Quality SSOTAAON. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the quality standards Subcommittee of the American Academy of Neurology. Neurology. 2006;67:203–10.

    Article  CAS  PubMed  Google Scholar 

  10. •• Greer DM, Rosenthal ES, Wu O. Neuroprognostication of hypoxic–ischaemic coma in the therapeutic hypothermia era. Nat Rev Neurol. 2014;10:190–203. Comprehensive review looking at the inherent bias of prognostication studies in general and at all prognostic tests in the context of therapeutic hypothermia.

    Article  CAS  PubMed  Google Scholar 

  11. • Sandroni C, Cavallaro F, Callaway CW, et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: a systematic review and meta-analysis. Part 1: patients not treated with therapeutic hypothermia. Resuscitation. 2013;84:1310–23. Comprehensive meta-analysis including 2,828 patients with CA treated with normothermia looking at the prognostic value of EEG in the context of the neurological examination and all other available ancillary testing.

    Article  PubMed  Google Scholar 

  12. • Sandroni C, Cavallaro F, Callaway CW, D’Arrigo S, Sanna T, Kuiper MA, et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: a systematic review and meta-analysis. Part 2: patients treated with therapeutic hypothermia. Resuscitation. 2013;84:1324–38. Comprehensive meta-analysis including 2403 patients with CA treated with therapeutic hypothermia looking at the prognostic value of EEG in the context of the neurological examination and all other available ancillary testing.

    Article  PubMed  Google Scholar 

  13. Westhall E. Electroencephalography as a prognostic tool after cardiac arrest. Semin Neurol. 2017;37:48–59.

    Article  PubMed  Google Scholar 

  14. Friberg H, Cronberg T, Dünser MW, Duranteau J, Horn J, Oddo M. Survey on current practices for neurological prognostication after cardiac arrest. Resuscitation. 2015;90:158–62.

    Article  PubMed  Google Scholar 

  15. Neumar RW, Nolan JP, Adrie C, Aibiki M, Berg RA, Böttiger BW, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the international liaison committee on resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation. 2008;118:2452–83.

    Article  PubMed  Google Scholar 

  16. • Hirsch LJ, LaRoche SM, Gaspard N, et al. American Clinical Neurophysiology Society’s standardized critical care EEG terminology: 2012 version. J Clin Neurophysiol. 2013;30:1–27. Standardized terminology that should be utilized for all EEG findings in critically ill patients.

    Article  CAS  PubMed  Google Scholar 

  17. Gaspard N, Hirsch LJ, LaRoche SM, Hahn CD, Westover MB, Critical CEEGMRC. Interrater agreement for critical care EEG terminology. Epilepsia. 2014;55:1366–73.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Westhall E, Rosén I, Rossetti AO, van Rootselaar AF, Wesenberg Kjaer T, Friberg H, et al. Interrater variability of EEG interpretation in comatose cardiac arrest patients. Clin Neurophysiol. 2015;126:2397–404.

    Article  PubMed  Google Scholar 

  19. Westhall E, Rossetti AO, van Rootselaar AF, Wesenberg Kjaer T, Horn J, Ullén S, et al. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest. Neurology. 2016;86:1482–90.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jordan KG, Emergency EEG. Continuous EEG monitoring in acute ischemic stroke. J Clin Neurophysiol. 2004;21:341–52.

    PubMed  Google Scholar 

  21. Silverstein FS, Barks JD, Hagan P, Liu XH, Ivacko J, Szaflarski J. Cytokines and perinatal brain injury. Neurochem Int. 1997;30:375–83.

    Article  CAS  PubMed  Google Scholar 

  22. Chen B, Chen G, Dai C, Wang P, Zhang L, Huang Y, Li Y Comparison of quantitative characteristics of early post-resuscitation EEG between asphyxial and ventricular fibrillation cardiac arrest in rats. Neurocrit Care. 2017. https://doi.org/10.1007/s12028-017-0401-z.

  23. Geocadin RG, Sherman DL, Christian Hansen H, Kimura T, Niedermeyer E, Thakor NV, et al. Neurological recovery by EEG bursting after resuscitation from cardiac arrest in rats. Resuscitation. 2002;55:193–200.

    Article  PubMed  Google Scholar 

  24. Koenig MA, Kaplan PW, Thakor NV. Clinical neurophysiologic monitoring and brain injury from cardiac arrest. Neurol Clin. 2006;24:89–106.

    Article  PubMed  Google Scholar 

  25. Jørgensen EO, Malchow-Møller A. Natural history of global and critical brain ischaemia. Part I: EEG and neurological signs during the first year after cardiopulmonary resuscitation in patients subsequently regaining consciousness. Resuscitation. 1981;9:133–53.

    Article  PubMed  Google Scholar 

  26. Jørgensen EO, Malchow-Møller A. Natural history of global and critical brain ischaemia. Part II: EEG and neurological signs in patients remaining unconscious after cardiopulmonary resuscitation. Resuscitation. 1981;9:155–74.

    Article  PubMed  Google Scholar 

  27. Jørgensen EO, Holm S. The natural course of neurological recovery following cardiopulmonary resuscitation. Resuscitation. 1998;36:111–22.

    Article  PubMed  Google Scholar 

  28. • Golan E, Barrett K, Alali AS, et al. Predicting neurologic outcome after targeted temperature management for cardiac arrest: systematic review and meta-analysis. Crit Care Med. 2014;42:1919–30. Large meta-analysis including 1845 CA patients treated with therapeutic hypothermia looking at the prognostic value of EEG in the context of the neurological examination and all other available ancillary testing.

    Article  PubMed  Google Scholar 

  29. • Søholm H, Kjær TW, Kjaergaard J, et al. Prognostic value of electroencephalography (EEG) after out-of-hospital cardiac arrest in successfully resuscitated patients used in daily clinical practice. Resuscitation. 2014;85:1580–5. Large observational cohort study including 1076 patients with out-of-hospital CA looking at prognostic value of various EEG patterns corrected for main clinical aspects of CA but not for neurologic examination or any other ancillary testing.

    Article  PubMed  Google Scholar 

  30. Wennervirta JE, Ermes MJ, Tiainen SM, Salmi TK, Hynninen MS, Särkelä MOK, et al. Hypothermia-treated cardiac arrest patients with good neurological outcome differ early in quantitative variables of EEG suppression and epileptiform activity. Crit Care Med. 2009;37:2427–35.

    Article  PubMed  Google Scholar 

  31. Stecker MM, Cheung AT, Pochettino A, Kent GP, Patterson T, Weiss SJ, et al. Deep hypothermic circulatory arrest: II. Changes in electroencephalogram and evoked potentials during rewarming. Ann Thorac Surg. 2001;71:22–8.

    Article  CAS  PubMed  Google Scholar 

  32. Hofmeijer J, Tjepkema-Cloostermans MC, van Putten MJ. Burst-suppression with identical bursts: a distinct EEG pattern with poor outcome in postanoxic coma. Clin Neurophysiol. 2014;125:947–54.

    Article  PubMed  Google Scholar 

  33. • Sivaraju A, Gilmore EJ, Wira CR, et al. Prognostication of post-cardiac arrest coma: early clinical and electroencephalographic predictors of outcome. Intensive Care Med. 2015;41:1264–72. Comprehensive, prospective cohort study of 100 post-CA patients treated with therapeutic hypothermia looking at prognostic EEG patterns and potentially confounding factors within the first 72 h of ROSC.

    Article  PubMed  Google Scholar 

  34. Rossetti AO, Urbano LA, Delodder F, Kaplan PW, Oddo M. Prognostic value of continuous EEG monitoring during therapeutic hypothermia after cardiac arrest. Crit Care. 2010;14:R173.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tsetsou S, Oddo M, Rossetti AO. Clinical outcome after a reactive hypothermic EEG following cardiac arrest. Neurocrit Care. 2013;19:283–6.

    Article  PubMed  Google Scholar 

  36. Kaplan PW, Genoud D, Ho TW, Jallon P. Etiology, neurologic correlations, and prognosis in alpha coma. Clin Neurophysiol. 1999;110:205–13.

    Article  CAS  PubMed  Google Scholar 

  37. Berkhoff M, Donati F, Bassetti C. Postanoxic alpha (theta) coma: a reappraisal of its prognostic significance. Clin Neurophysiol. 2000;111:297–304.

    Article  CAS  PubMed  Google Scholar 

  38. Kaplan PW, Genoud D, Ho TW, Jallon P. Clinical correlates and prognosis in early spindle coma. Clin Neurophysiol. 2000;111:584–90.

    Article  CAS  PubMed  Google Scholar 

  39. Tjepkema-Cloostermans MC, Hindriks R, Hofmeijer J, van Putten MJ. Generalized periodic discharges after acute cerebral ischemia: reflection of selective synaptic failure. Clin Neurophysiol. 2014;125:255–62.

    Article  PubMed  Google Scholar 

  40. Chong DJ, Hirsch LJ. Which EEG patterns warrant treatment in the critically ill? Reviewing the evidence for treatment of periodic epileptiform discharges and related patterns. J Clin Neurophysiol. 2005;22:79–91.

    Article  PubMed  Google Scholar 

  41. Sreedharan J, Gourlay E, Evans MR, Koutroumanidis M. Falsely pessimistic prognosis by EEG in post-anoxic coma after cardiac arrest: the borderland of nonconvulsive status epilepticus. Epileptic Disord. 2012;14:340–4.

    PubMed  Google Scholar 

  42. Hirsch LJ, Claassen J. The current state of treatment of status epilepticus. Curr Neurol Neurosci Rep. 2002;2:345–56.

    Article  PubMed  Google Scholar 

  43. Renzel R, Baumann CR, Mothersill I, Poryazova R. Persistent generalized periodic discharges: a specific marker of fatal outcome in cerebral hypoxia. Clin Neurophysiol. 2017;128:147–52.

    Article  PubMed  Google Scholar 

  44. Bauer G, Trinka E, Kaplan PW. EEG patterns in hypoxic encephalopathies (post-cardiac arrest syndrome): fluctuations, transitions, and reactions. J Clin Neurophysiol. 2013;30:477–89.

    Article  PubMed  Google Scholar 

  45. Ruijter BJ, van Putten MJ, Hofmeijer J. Generalized epileptiform discharges in postanoxic encephalopathy: quantitative characterization in relation to outcome. Epilepsia. 2015;56:1845–54.

    Article  PubMed  Google Scholar 

  46. Crepeau AZ, Rabinstein AA, Fugate JE, Mandrekar J, Wijdicks EF, White RD, et al. Continuous EEG in therapeutic hypothermia after cardiac arrest: prognostic and clinical value. Neurology. 2013;80:339–44.

    Article  PubMed  Google Scholar 

  47. Mani R, Schmitt SE, Mazer M, Putt ME, Gaieski DF. The frequency and timing of epileptiform activity on continuous electroencephalogram in comatose post-cardiac arrest syndrome patients treated with therapeutic hypothermia. Resuscitation. 2012;83:840–7.

    Article  PubMed  Google Scholar 

  48. Ribeiro A, Singh R, Brunnhuber F. Clinical outcome of generalized periodic epileptiform discharges on first EEG in patients with hypoxic encephalopathy postcardiac arrest. Epilepsy Behav. 2015;49:268–72.

    Article  CAS  PubMed  Google Scholar 

  49. San-Juan OD, Chiappa KH, Costello DJ, Cole AJ. Periodic epileptiform discharges in hypoxic encephalopathy: BiPLEDs and GPEDs as a poor prognosis for survival. Seizure. 2009;18:365–8.

    Article  CAS  PubMed  Google Scholar 

  50. Foreman B, Claassen J, Abou Khaled K, Jirsch J, Alschuler DM, Wittman J, et al. Generalized periodic discharges in the critically ill: a case–control study of 200 patients. Neurology. 2012;79:1951–60.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hirsch LJ, Claassen J, Mayer SA, Emerson RG. Stimulus-induced rhythmic, periodic, or ictal discharges (SIRPIDs): a common EEG phenomenon in the critically ill. Epilepsia. 2004;45:109–23.

    Article  PubMed  Google Scholar 

  52. Alvarez V, Oddo M, Rossetti AO. Stimulus-induced rhythmic, periodic or ictal discharges (SIRPIDs) in comatose survivors of cardiac arrest: characteristics and prognostic value. Clin Neurophysiol. 2013;124:204–8.

    Article  PubMed  Google Scholar 

  53. Fantaneanu TA, Sarkis R, Avery K, Scirica BM, Hurwitz S, Henderson GV, et al. Delayed deterioration of EEG background rhythm post-cardiac arrest. Neurocrit Care. 2017;26:411–9.

    Article  PubMed  Google Scholar 

  54. Tsetsou S, Novy J, Oddo M, Rossetti AO. EEG reactivity to pain in comatose patients: importance of the stimulus type. Resuscitation. 2015;97:34–7.

    Article  PubMed  Google Scholar 

  55. Rossetti AO, Oddo M, Logroscino G, Kaplan PW. Prognostication after cardiac arrest and hypothermia: a prospective study. Ann Neurol. 2010;67:301–7.

    PubMed  Google Scholar 

  56. Hermans MC, Westover MB, van Putten MJAM, Hirsch LJ, Gaspard N. Quantification of EEG reactivity in comatose patients. Clin Neurophysiol. 2016;127:571–80.

    Article  PubMed  Google Scholar 

  57. Noirhomme Q, Lehembre R, Lugo ZR, et al. Automated analysis of background EEG and reactivity during therapeutic hypothermia in comatose patients after cardiac arrest. Clin EEG Neurosci. 2014;45:6–13.

    Article  PubMed  Google Scholar 

  58. Zhang Y, Su YY, Haupt WF, Zhao JW, Xiao SY, Li HL, et al. Application of electrophysiologic techniques in poor outcome prediction among patients with severe focal and diffuse ischemic brain injury. J Clin Neurophysiol. 2011;28:497–503.

    PubMed  Google Scholar 

  59. Cloostermans MC, van Meulen FB, Eertman CJ, Hom HW, van Putten MJ. Continuous electroencephalography monitoring for early prediction of neurological outcome in postanoxic patients after cardiac arrest: a prospective cohort study. Crit Care Med. 2012;40:2867–75.

    Article  PubMed  Google Scholar 

  60. Oh SH, Park KN, Shon YM, Kim YM, Kim HJ, Youn CS, et al. Continuous amplitude-integrated electroencephalographic monitoring is a useful prognostic tool for hypothermia-treated cardiac arrest patients. Circulation. 2015;132:1094–103.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kawai M, Thapalia U, Verma A. Outcome from therapeutic hypothermia and EEG. J Clin Neurophysiol. 2011;28:483–8.

    PubMed  Google Scholar 

  62. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557–63.

    Article  PubMed  Google Scholar 

  63. Hypothermia ACASG. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346:549–56.

    Article  Google Scholar 

  64. (CARES) CARTES. National Utstein Report 2012. 2012.

  65. Leslie K, Sessler DI, Bjorksten AR, Moayeri A. Mild hypothermia alters propofol pharmacokinetics and increases the duration of action of atracurium. Anesth Analg. 1995;80:1007–14.

    CAS  PubMed  Google Scholar 

  66. Tortorici MA, Kochanek PM, Poloyac SM. Effects of hypothermia on drug disposition, metabolism, and response: a focus of hypothermia-mediated alterations on the cytochrome P450 enzyme system. Crit Care Med. 2007;35:2196–204.

    Article  CAS  PubMed  Google Scholar 

  67. van den Broek MP, Groenendaal F, Egberts AC, Rademaker CM. Effects of hypothermia on pharmacokinetics and pharmacodynamics: a systematic review of preclinical and clinical studies. Clin Pharmacokinet. 2010;49:277–94.

    Article  PubMed  Google Scholar 

  68. Harden A, Pampiglione G, Waterston DJ. Circulatory arrest during hypothermia in cardiac surgery: an E.E.G. study in children. Br Med J. 1966;2:1105–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pearcy WC, Virtue RW. The electroencephalogram in hypothermia with circulatory arrest. Anesthesiology. 1959;20:341–7.

    Article  CAS  PubMed  Google Scholar 

  70. Woodhall B, Sealy WC, Hall KD, Floyd WL. Craniotomy under conditions of quinidine-protected cardioplegia and profound hypothermia. Ann Surg. 1960;152:37–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Crepeau AZ, Fugate JE, Mandrekar J, White RD, Wijdicks EF, Rabinstein AA, et al. Value analysis of continuous EEG in patients during therapeutic hypothermia after cardiac arrest. Resuscitation. 2014;85:785–9.

    Article  PubMed  Google Scholar 

  72. Brenner RP, Schwartzman RJ, Richey ET. Prognostic significance of episodic low amplitude or relatively isoelectric EEG patterns. Dis Nerv Syst. 1975;36:582–7.

    CAS  PubMed  Google Scholar 

  73. Rae-Grant AD, Strapple C, Barbour PJ. Episodic low-amplitude events: an under-recognized phenomenon in clinical electroencephalography. J Clin Neurophysiol. 1991;8:203–11.

    Article  CAS  PubMed  Google Scholar 

  74. Grippo A, Carrai R, Scarpino M, Spalletti M, Lanzo G, Cossu C, et al. Neurophysiological prediction of neurological good and poor outcome in post-anoxic coma. Acta Neurol Scand. 2017;135:641–8.

    Article  CAS  PubMed  Google Scholar 

  75. Hofmeijer J, Beernink TM, Bosch FH, Beishuizen A, Tjepkema-Cloostermans MC, van Putten MJ. Early EEG contributes to multimodal outcome prediction of postanoxic coma. Neurology. 2015;85:137–43.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Carrai R, Grippo A, Scarpino M, Spalletti M, Cossu C, Lanzo G, et al. Time-dependent and independent neurophysiological indicators of prognosis in post-anoxic coma subjects treated by therapeutic hypothermia. Minerva Anestesiol. 2016;82:940–9.

    PubMed  Google Scholar 

  77. Sondag L, Ruijter BJ, Tjepkema-Cloostermans MC, Beishuizen A, Bosch FH, van Til JA, et al. Early EEG for outcome prediction of postanoxic coma: prospective cohort study with cost-minimization analysis. Crit Care. 2017;21:111.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Knight WA, Hart KW, Adeoye OM, Bonomo JB, Keegan SP, Ficker DM, et al. The incidence of seizures in patients undergoing therapeutic hypothermia after resuscitation from cardiac arrest. Epilepsy Res. 2013;106:396–402.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Daubin C, Guillotin D, Etard O, Gaillard C, du Cheyron D, Ramakers M, et al. A clinical and EEG scoring system that predicts early cortical response (N20) to somatosensory evoked potentials and outcome after cardiac arrest. BMC Cardiovasc Disord. 2008;8:35.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Szaflarski JP. Cold but not dead: the role of EEG in predicting the outcome after cardiac arrest. Epilepsy Curr. 2016;16:389–90.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Youn CS, Callaway CW, Rittenberger JC, Post CAS. Combination of initial neurologic examination and continuous EEG to predict survival after cardiac arrest. Resuscitation. 2015;94:73–9.

    Article  PubMed  Google Scholar 

  82. Auer R, Sutherland G. Hypoxia and related conditions. In: Graham DI, Lantos PL, eds. Greenfield’s Neuropathology. London, England: Arnold. 2002.

  83. Towne AR, Waterhouse EJ, Boggs JG, Garnett LK, Brown AJ, Smith JR, et al. Prevalence of nonconvulsive status epilepticus in comatose patients. Neurology. 2000;54:340–5.

    Article  CAS  PubMed  Google Scholar 

  84. Claassen J, Mayer SA, Kowalski RG, Emerson RG, Hirsch LJ. Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology. 2004;62:1743–8.

    Article  CAS  PubMed  Google Scholar 

  85. Shafi MM, Westover MB, Cole AJ, Kilbride RD, Hoch DB, Cash SS. Absence of early epileptiform abnormalities predicts lack of seizures on continuous EEG. Neurology. 2012;79:1796–801.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Leitinger M, Beniczky S, Rohracher A, Gardella E, Kalss G, Qerama E, et al. Salzburg consensus criteria for non-convulsive status epilepticus—approach to clinical application. Epilepsy Behav. 2015;49:158–63.

    Article  CAS  PubMed  Google Scholar 

  87. Legriel S, Bruneel F, Sediri H, Hilly J, Abbosh N, Lagarrigue MH, et al. Early EEG monitoring for detecting postanoxic status epilepticus during therapeutic hypothermia: a pilot study. Neurocrit Care. 2009;11:338–44.

    Article  PubMed  Google Scholar 

  88. Rittenberger JC, Popescu A, Brenner RP, Guyette FX, Callaway CW. Frequency and timing of nonconvulsive status epilepticus in comatose post-cardiac arrest subjects treated with hypothermia. Neurocrit Care. 2012;16:114–22.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, et al. Targeted temperature management at 33°C versus 36°C after cardiac arrest. N Engl J Med. 2013;369:2197–206.

    Article  CAS  PubMed  Google Scholar 

  90. Krumholz A, Stern BJ, Weiss HD. Outcome from coma after cardiopulmonary resuscitation: relation to seizures and myoclonus. Neurology. 1988;38:401–5.

    Article  CAS  PubMed  Google Scholar 

  91. Rossetti AO, Logroscino G, Liaudet L, Ruffieux C, Ribordy V, Schaller MD, et al. Status epilepticus: an independent outcome predictor after cerebral anoxia. Neurology. 2007;69:255–60.

    Article  CAS  PubMed  Google Scholar 

  92. Rossetti AO, Oddo M, Liaudet L, Kaplan PW. Predictors of awakening from postanoxic status epilepticus after therapeutic hypothermia. Neurology. 2009;72:744–9.

    Article  PubMed  Google Scholar 

  93. Rundgren M, Westhall E, Cronberg T, Rosén I, Friberg H. Continuous amplitude-integrated electroencephalogram predicts outcome in hypothermia-treated cardiac arrest patients. Crit Care Med. 2010;38:1838–44.

    Article  PubMed  Google Scholar 

  94. Hofmeijer J, Tjepkema-Cloostermans MC, Blans MJ, Beishuizen A, van Putten MJ. Unstandardized treatment of electroencephalographic status epilepticus does not improve outcome of comatose patients after cardiac arrest. Front Neurol. 2014;5:39.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sadaka F, Doerr D, Hindia J, Lee KP, Logan W. Continuous electroencephalogram in comatose postcardiac arrest syndrome patients treated with therapeutic hypothermia: outcome prediction study. J Intensive Care Med. 2015;30:292–6.

    Article  PubMed  Google Scholar 

  96. Vespa P, Martin NA, Nenov V, Glenn T, Bergsneider M, Kelly D, et al. Delayed increase in extracellular glycerol with post-traumatic electrographic epileptic activity: support for the theory that seizures induce secondary injury. Acta Neurochir Suppl. 2002;81:355–7.

    CAS  PubMed  Google Scholar 

  97. Ruijter BJ, van Putten MJ, Horn J, Blans MJ, Beishuizen A, van Rootselaar A, et al. Treatment of electroencephalographic status epilepticus after cardiopulmonary resuscitation (TELSTAR): study protocol for a randomized controlled trial. Trials. 2014;15:433.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Thatcher RW. Validity and reliability of quantitative electroencephalography. J Neurother. 2010;14:122–52.

    Article  Google Scholar 

  99. Friedman D, Claassen J, Hirsch LJ. Continuous electroencephalogram monitoring in the intensive care unit. Anesth Analg. 2009;109:506–23.

    Article  PubMed  Google Scholar 

  100. Haider HA, Esteller R, Hahn CD, Westover MB, Halford JJ, Lee JW, et al. Sensitivity of quantitative EEG for seizure identification in the intensive care unit. Neurology. 2016;87:935–44.

    Article  PubMed  PubMed Central  Google Scholar 

  101. van Laerhoven H, de Haan TR, Offringa M, Post B, van der Lee JH. Prognostic tests in term neonates with hypoxic–ischemic encephalopathy: a systematic review. Pediatrics. 2013;131:88–98.

    Article  PubMed  Google Scholar 

  102. Oh SH, Park KN, Kim YM, Kim HJ, Youn CS, Kim SH, et al. The prognostic value of continuous amplitude-integrated electroencephalogram applied immediately after return of spontaneous circulation in therapeutic hypothermia-treated cardiac arrest patients. Resuscitation. 2013;84:200–5.

    Article  PubMed  Google Scholar 

  103. Bruhn J, Bouillon TW, Shafer SL. Bispectral index (BIS) and burst suppression: revealing a part of the BIS algorithm. J Clin Monit Comput. 2000;16:593–6.

    Article  CAS  PubMed  Google Scholar 

  104. Yang Q, Su Y, Hussain M, Chen W, Ye H, Gao D, et al. Poor outcome prediction by burst suppression ratio in adults with post-anoxic coma without hypothermia. Neurol Res. 2014;36:453–60.

    Article  PubMed  Google Scholar 

  105. Muhlhofer WG, Zak R, Kamal T, Rizvi B, Sands LP, Yuan M, et al. Burst-suppression ratio underestimates absolute duration of electroencephalogram suppression compared with visual analysis of intraoperative electroencephalogram. Br J Anaesth. 2017;118:755–61.

    Article  CAS  PubMed  Google Scholar 

  106. Jouffroy R, Lamhaut L, Guyard A, Philippe P, An K, Spaulding C, et al. Early detection of brain death using the bispectral index (BIS) in patients treated by extracorporeal cardiopulmonary resuscitation (E-CPR) for refractory cardiac arrest. Resuscitation. 2017;120:8–13.

    Article  PubMed  Google Scholar 

  107. Leary M, Fried DA, Gaieski DF, Merchant RM, Fuchs BD, Kolansky DM, et al. Neurologic prognostication and bispectral index monitoring after resuscitation from cardiac arrest. Resuscitation. 2010;81:1133–7.

    Article  PubMed  Google Scholar 

  108. Selig C, Riegger C, Dirks B, Pawlik M, Seyfried T, Klingler W. Bispectral index (BIS) and suppression ratio (SR) as an early predictor of unfavourable neurological outcome after cardiac arrest. Resuscitation. 2014;85:221–6.

    Article  PubMed  Google Scholar 

  109. Seder DB, Fraser GL, Robbins T, Libby L, Riker RR. The bispectral index and suppression ratio are very early predictors of neurological outcome during therapeutic hypothermia after cardiac arrest. Intensive Care Med. 2010;36:281–8.

    Article  PubMed  Google Scholar 

  110. Stammet P, Wagner DR, Gilson G, Devaux Y. Modeling serum level of s100β and bispectral index to predict outcome after cardiac arrest. J Am Coll Cardiol. 2013;62:851–8.

    Article  CAS  PubMed  Google Scholar 

  111. Rampil IJ. A primer for EEG signal processing in anesthesia. Anesthesiology. 1998;89:980–1002.

    Article  CAS  PubMed  Google Scholar 

  112. Särkelä MO, Ermes MJ, van Gils MJ, Yli-Hankala AM, Jäntti VH, Vakkuri AP. Quantification of epileptiform electroencephalographic activity during sevoflurane mask induction. Anesthesiology. 2007;107:928–38.

    Article  PubMed  CAS  Google Scholar 

  113. Moshirvaziri H, Ramezan-Arab N, Asgari S. Prediction of the outcome in cardiac arrest patients undergoing hypothermia using EEG wavelet entropy. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:3777–80.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Muhlhofer.

Ethics declarations

Conflict of Interest

W.M. and J.P.S. declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Epilepsy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhlhofer, W., Szaflarski, J.P. Prognostic Value of EEG in Patients after Cardiac Arrest—An Updated Review. Curr Neurol Neurosci Rep 18, 16 (2018). https://doi.org/10.1007/s11910-018-0826-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-018-0826-6

Keywords

Navigation