Skip to main content

Advertisement

Log in

Neurogenic Changes in the Upper Airway of Obstructive Sleep Apnoea

  • Sleep (M Thorpy, M Billiard, Section Editors)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Obstructive sleep apnoea (OSA) is linked to local neural injury that evokes airway muscle remodelling. The upper airway muscles of patients with OSA are exposed to intermittent hypoxia as well as vibration induced by snoring. A range of electrophysiological and other studies have established altered motor and sensory function of the airway in OSA. The extent to which these changes impair upper airway muscle function and their relationship to the progression of OSA remains undefined. This review will collate the evidence for upper airway remodelling in OSA, particularly the electromyographic changes in upper airway muscles of patients with OSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Djonlagic I, Saboisky J, Carusona A, Stickgold R, Malhotra A. Increased sleep fragmentation leads to impaired off-line consolidation of motor memories in humans. PLoS One. 2012;7:e34106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Saboisky JP, Chamberlin NL, Malhotra A. Potential therapeutic targets in obstructive sleep apnoea. Expert Opin Ther Targets. 2009;13:795–809.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Marshall NS, Wong KK, Cullen SR, Knuiman MW, Grunstein RR. Sleep apnea and 20-year follow-up for all-cause mortality, stroke, and cancer incidence and mortality in the busselton health study cohort. J Clin Sleep Med. 2014;10:355–62.

    PubMed Central  PubMed  Google Scholar 

  4. Strohl KP, Brown DB, Collop N, George C, Grunstein R, et al. An official American Thoracic Society Clinical Practice Guideline: sleep apnea, sleepiness, and driving risk in noncommercial drivers. An update of a 1994 statement. Am J Respir Crit Care Med. 2013;187:1259–66.

    Article  PubMed  Google Scholar 

  5. Schwartz AR, Gold AR, Schubert N, Stryzak A, Wise RA, et al. Effect of weight loss on upper airway collapsibility in obstructive sleep apnea. Am Rev Resp Dis. 1991;144:494–8.

    Article  CAS  PubMed  Google Scholar 

  6. Eckert DJ, White DP, Jordan AS, Malhotra A, Wellman A. Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am J Respir Crit Care Med. 2013;188:996–1004.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Gottlieb DJ, Punjabi NM, Mehra R, Patel SR, Quan SF, et al. CPAP versus oxygen in obstructive sleep apnea. New Engl J Med. 2014;370:2276–85. This paper shows that the treatment of obstructive sleep apnea, with CPAP (but not supplemental oxygen), in patients with cardiovascular disease results in reduced blood pressure (−2.4 mmHg).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Catcheside PG. Predictors of continuous positive airway pressure adherence. F1000 Medicine Reports 2; 2010.

  9. Sawyer AM, Gooneratne NS, Marcus CL, Ofer D, Richards KC, et al. A systematic review of CPAP adherence across age groups: clinical and empiric insights for developing CPAP adherence interventions. Sleep Med Rev. 2011;15:343–56.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Saboisky JP, Jordan AS, Eckert DJ, White DP, Trinder JA, et al. Recruitment and rate-coding strategies of the human genioglossus muscle. J Appl Physiol. 2010;109:1939–49.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Strohl KP, Redline S. Nasal CPAP therapy, upper airway muscle activation, and obstructive sleep apnea. Am Rev Respir Dis. 1986;134:555–8.

    CAS  PubMed  Google Scholar 

  12. Bilston LE, Gandevia SC. Biomechanical properties of the human upper airway and their effect on its behavior during breathing and in obstructive sleep apnea. J Appl Physiol. 2014;116:314–24.

    Article  CAS  PubMed  Google Scholar 

  13. Walsh JH, Leigh MS, Paduch A, Maddison KJ, Philippe DL, et al. Evaluation of pharyngeal shape and size using anatomical optical coherence tomography in individuals with and without obstructive sleep apnoea. J Sleep Res. 2008;17:230–8.

    Article  PubMed  Google Scholar 

  14. Keir WM, Smith KK. Tongues, tentacles, and trunks: the biomechanics of movement in muscular hydrostats. Zool J Linn Soc. 1985;83:307–24.

    Article  Google Scholar 

  15. Abd-El-Malek S. A contribution to the study of the movements of the tongue in animals, with special reference to the cat. J Anat. 1938;73:15–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Takemoto H. Morphological analyses of the human tongue musculature for three-dimensional modeling. J Speech Lang Hear Res. 2001;44:95–107.

    Article  CAS  PubMed  Google Scholar 

  17. Saboisky JP, Butler JE, Fogel RB, Taylor JL, Trinder JA, et al. Tonic and phasic respiratory drives to human genioglossus motoneurons during breathing. J Neurophysiol. 2006;95:2213–21.

    Article  PubMed  Google Scholar 

  18. Tsuiki S, Ono T, Ishiwata Y, Kuroda T. Functional divergence of human genioglossus motor units with respiratory-related activity. Eur Resp J. 2000;15:906–10.

    Article  CAS  Google Scholar 

  19. Mateika JH, Millrood DL, Kim J, Rodriguez HP, Samara GJ. Response of human tongue protrudor and retractors to hypoxia and hypercapnia. Am J Respir Crit Care Med. 1999;160:1976–82.

    Article  CAS  PubMed  Google Scholar 

  20. Cheng S, Butler JE, Gandevia SC, Bilston LE. Movement of the tongue during normal breathing in awake healthy humans. J Physiol. 2008;586:4283–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Davidson TM. The great leap forward: the anatomic basis for the acquisition of speech and obstructive sleep apnea. Sleep Med. 2003;4:185–94.

    Article  PubMed  Google Scholar 

  22. Mu L, Sanders I. Human tongue neuroanatomy: nerve supply and motor endplates. Clin Anat. 2010;23:777–91. This article presents the clearest indication of neural innervation in the tongue of humans. It shows dense and complex innervation and that there are two motor endplate bands in the genioglossus of humans.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Cheng S, Brown EC, Hatt A, Butler JE, Gandevia SC, et al. Healthy humans with a narrow upper airway maintain patency during quiet breathing by dilating the airway during inspiration. J Physiol. 2014;592:4763–74.

    Article  CAS  PubMed  Google Scholar 

  24. Cheng S, Butler JE, Gandevia SC, Bilston LE. Movement of the human upper airway during inspiration with and without inspiratory resistive loading. J Appl Physiol. 2011;110:69–75.

    Article  CAS  PubMed  Google Scholar 

  25. Kwan BC, Butler JE, Hudson AL, McKenzie DK, Bilston LE, et al. A novel ultrasound technique to measure genioglossus movement in vivo. J Appl Physiol. 2014;117:556–62.

    Article  PubMed  Google Scholar 

  26. Schwab RJ, Gefter WB, Hoffman EA, Gupta KB, Pack AI. Dynamic upper airway imaging during awake respiration in normal subjects and patients with sleep disordered breathing. Am Rev Resp Dis. 1993;148:1385–400.

    Article  CAS  PubMed  Google Scholar 

  27. Morrell MJ, Badr MS. Effects of NREM sleep on dynamic within-breath changes in upper airway patency in humans. J Appl Physiol. 1998;84:190–9.

    CAS  PubMed  Google Scholar 

  28. Mezzanotte WS, Tangel DJ, White DP. Waking genioglossal electromyogram in sleep apnea patients versus normal controls (a neuromuscular compensatory mechanism). J Clin Invest. 1992;89:1571–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Fogel RB, Malhotra A, Giora P, Edwards JK, Beauregard J, et al. Genioglossal activation in paitents with obstructive sleep apnea versus control subjects. Am J Respir Crit Care Med. 2001;164:2025–30.

    Article  CAS  PubMed  Google Scholar 

  30. Katz ES, White DP. Genioglossus activity in children with obstructive sleep apnea during wakefulness and sleep onset. Am J Respir Crit Care Med. 2003;168:664–70.

    Article  PubMed  Google Scholar 

  31. Suratt PM, McTier RF, Wilhoit SC. Upper airway muscle activation is augmented in patients with obstructive sleep apnea compared with that in normal subjects. Am Rev Resp Dis. 1988;137:889–94.

    Article  CAS  PubMed  Google Scholar 

  32. McSharry D, O’Connor C, McNicholas T, Langran S, O’Sullivan M, et al. Genioglossus fatigue in obstructive sleep apnea. Resp Physiol Neurobiol. 2012;183:59–66.

    Article  Google Scholar 

  33. Rongen GA, van Dijk JP, van Ginneken EE, Stegeman DF, Smits P, et al. Repeated ischaemic isometric exercise increases muscle fibre conduction velocity in humans: involvement of Na(+)-K(+)-ATPase. J Physiol. 2002;540:1071–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Sauerland EK, Harper RM. The human tongue during sleep: electromyographic activity of the genioglossus muscle. Exp Neurol. 1976;51:160–70.

    Article  CAS  PubMed  Google Scholar 

  35. Wiegand L, Zwillich CW, White DP. Collapsibility of the human upper airway during normal sleep. J Appl Physiol. 1989;66:1800–8.

    Article  CAS  PubMed  Google Scholar 

  36. Worsnop C, Kay A, Kim Y, Trinder J, Pierce R. Effect of age on sleep onset-related changes in respiratory pump and upper airway muscle function. J Appl Physiol. 2000;88:1831–9.

    Article  CAS  PubMed  Google Scholar 

  37. Tangel DJ, Mezzanotte WS, Sandberg EJ, White DP. Influences of NREM sleep on the activity of tonic vs. inspiratory phasic muscles in normal men. J Appl Physiol. 1992;73:1058–66.

    CAS  PubMed  Google Scholar 

  38. McGinley BM, Schwartz AR, Schneider H, Kirkness JP, Smith PL, et al. Upper airway neuromuscular compensation during sleep is defective in obstructive sleep apnea. J Appl Physiol. 2008;105:197–205.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Saboisky JP, Butler JE, McKenzie DK, Gorman RB, Trinder JA, et al. Neural drive to human genioglossus in obstructive sleep apnoea. J Physiol. 2007;585:135–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Saboisky JP, Stashuk DW, Hamilton-Wright A, Carusona AL, Campana LM, et al. Neurogenic changes in the upper airway of obstructive sleep apnea patients. Am J Respir Crit Care Med. 2012;185:322–9. This article presents strong evidence that there are neuropathic changes evident through remodelled motor units with 14% longer durations and were 33% more complex in obstructive sleep apnea, and hence, change the overall EMG signal in this disorder. Much previous speculation about drive to the upper airway muscles has failed to consider the likelihood of changes at a peripheral level in the motor units.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Steier J, Jolley CJ, Seymour J, Roughton M, Polkey MI, et al. Neural respiratory drive in obesity. Thorax. 2009;64:719–25.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang H, Ye J-Y, Hua L, Chen Z-H, Ling L, Zhu Q, et al. Inhomogeneous neuromuscular injury of the genioglossus muscle in subjects with obstructive sleep apnea. Sleep Breath. 2014;1–7. doi:10.1007/s11325-014-1044-3

  43. Svanborg E. Impact of obstructive apnea syndrome on upper airway respiratory muscles. Resp Physiol Neurobiol. 2005;147:263–72.

    Article  Google Scholar 

  44. Hagander L. Quantitative sensory testing, obstructive sleep apnea and peripheral nervous lesions. Thesis Department of Clinical Neuroscience Karolinska Institutet, and Department of Neuroscience and Locomotion, Linkoping University: Stockholm, Sweden; 2006.

  45. Kim AM, Keenan BT, Jackson N, Chan EL, Staley B, et al. Metabolic activity of the tongue in obstructive sleep apnea. A novel application of FDG positron emission tomography imaging. Am J Respir Crit Care Med. 2014;189:1416–25. This article explores the ‘compensatory’ drive hypothesis using the paradigm that if genioglossus EMG activation is elevated in OSA the metabolic activity should express augmented activity. These results show glucose uptake is not enhanced but rather decreased in the genioglossus muscle of patients with OSA during wakefulness.

    Article  PubMed  Google Scholar 

  46. Edwards BA, O’Driscoll DM, Ali A, Jordan AS, Trinder J, et al. Aging and sleep: physiology and pathophysiology. Semin Respir Crit Care Med. 2010;31:618–33.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Dempsey JA, Veasey SC, Morgan BJ, O’Donnell CP. Pathophysiology of sleep apnea. Physiol Rev. 2010;90:47–112.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Takeda N, Thomas GR, Ludlow CL. Aging effects on motor units in the human thyroarytenoid muscle. Laryngoscope. 2000;110:1018–25.

    Article  CAS  PubMed  Google Scholar 

  49. Saboisky JP, Stashuk DW, Hamilton-Wright A, Trinder J, Nandedkar S, et al. Effects of aging on genioglossus motor units in humans. PLoS One. 2014;9:e104572.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Vogt T, Nix WA, Pfeifer B. Relationship between electrical and mechanical properties of motor units. J Neurol Neurosurg Psychiatry. 1990;53:331–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Boyd JH, Petrof BJ, Hamid Q, Fraser R, Kimoff RJ. Upper airway muscle inflammation and denervation changes in obstructive sleep apnea. Am J Respir Crit Care Med. 2004;170:541–6. This paper is one of the first non-EMG examinations of the upper airway that provided strong evidence for the role of neurogenic changes in altering OSA patients muscle. This paper demonstrated an overexpression of neural cell adhesion molecule protein in both the mucosal and muscular layers of patients with OSA. This finding implies active collateral sprouting.

    Article  PubMed  Google Scholar 

  52. Kimoff RJ. Upper airway myopathy is important in the pathophysiology of obstructive sleep apnea. J Clin Sleep Med. 2007;3:567–9.

    PubMed Central  PubMed  Google Scholar 

  53. Eckert DJ, Saboisky JP, Jordan AS, Malhotra A. Upper airway myopathy is not important in the pathophysiology of obstructive sleep apnea. J Clin Sleep Med. 2007;3:570–3.

    PubMed Central  PubMed  Google Scholar 

  54. Saboisky JP, Butler JE, Gandevia SC, Eckert DJ. Functional role of neural injury in obstructive sleep apnea. Front Neurol. 2012;3:95.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Chetter IC, Kent PJ, Kester RC. The hand arm vibration syndrome: a review. Cardiovasc Surg. 1998;6:1–9.

    Article  CAS  PubMed  Google Scholar 

  56. Dahlin LB, Lundborg G. Vibration-induced hand problems: role of the peripheral nerves in the pathophysiology. Scand J Plast Reconstr Surg Hand Surg. 2001;35:225–32.

    Article  CAS  PubMed  Google Scholar 

  57. Baxter B, Gillingwater TH, Parson SH. Rapid loss of motor nerve terminals following hypoxia-reperfusion injury occurs via mechanisms distinct from classic Wallerian degeneration. J Anat. 2008;212:827–35.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Carberry JC, McMorrow C, Bradford A, Jones JF, O’Halloran KD. Effects of sustained hypoxia on sternohyoid and diaphragm muscle during development. Eur Resp J. 2014;43:1149–58.

    Article  Google Scholar 

  59. Rahmani-Nia F, Farzaneh E, Damirchi A, Majlan AS, Tadibi V. Surface electromyography assessments of the vastus medialis and rectus femoris muscles and creatine kinase after eccentric contraction following gutamine supplementation. Asian J Sports Med. 2014;5:54–62.

    PubMed Central  PubMed  Google Scholar 

  60. Amato AA, Barohn RJ. Evaluation and treatment of inflammatory myopathies. J Neurol Neurosurg Psychiatry. 2009;80:1060–8.

    Article  CAS  PubMed  Google Scholar 

  61. Series F, Cote C, Simoneau JA, Gelinas Y, St Pierre S, et al. Physiologic, metabolic, and muscle fiber type characteristics of musculus uvulae in sleep apnea hypopnea syndrome and in snorers. J Clin Invest. 1995;95:20–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011;91:1447–531.

    Article  CAS  PubMed  Google Scholar 

  63. Gordon T, Thomas CK, Munson JB, Stein RB. The resilience of the size principle in the organization of motor unit properties in normal and reinnervated adult skeletal muscles. Can J Physiol Pharmacol. 2004;82:645–61.

    Article  CAS  PubMed  Google Scholar 

  64. Kugelberg E, Edstrom L, Abbruzzese M. Mapping of motor units in experimentally reinnervated rat muscle. Interpretation of histochemical and atrophic fibre patterns in neurogenic lesions. J Neurol Neurosurg Psychiatry. 1970;33:319–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Dengler R, Konstanzer A, Kuther G, Hesse S, Wolf W, et al. Amyotrophic lateral sclerosis: macro-EMG and twitch forces of single motor units. Muscle Nerve. 1990;13:545–50.

    Article  CAS  PubMed  Google Scholar 

  66. Sandberg A, Stålberg E. Changes in macro electromyography over time in patients with a history of polio: a comparison of 2 muscles. Arch Phys Med Rehabil. 2004;85:1174–82.

    Article  PubMed  Google Scholar 

  67. Brown EC, Cheng S, McKenzie DK, Butler JE, Gandevia SC, et al. Respiratory movement of upper airway tissue in obstructive sleep apnea. Sleep. 2013;36:1069–76.

    PubMed Central  PubMed  Google Scholar 

  68. Carrera M, Barbe F, Sauleda J, Tomas M, Gomez C, et al. Patients with obstructive sleep apnea exhibit genioglossus dysfunction that is normalized after treatment with continuous positive airway pressure. Am J Respir Crit Care Med. 1999;159:1960–6.

    Article  CAS  PubMed  Google Scholar 

  69. Schwab RJ, Pasirstein M, Kaplan L, Pierson R, Mackley A, et al. Family aggregation of upper airway soft tissue structures in normal subjects and patients with sleep apnea. Am J Respir Crit Care Med. 2006;173:453–63.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Nashi N, Kang S, Barkdull GC, Lucas J, Davidson TM. Lingual fat at autopsy. Laryngoscope. 2007;117:1467–73.

    Article  PubMed  Google Scholar 

  71. Horner RL, Mohiaddin RH, Lowell DG, Shea SA, Burman ED, et al. Sites and sizes of fat deposits around the pharynx in obese patients with obstructive sleep apnoea and weight matched controls. Eur Resp J. 1989;2:613–22.

    CAS  Google Scholar 

  72. Zohar Y, Sabo R, Strauss M, Schwartz A, Gal R, et al. Oropharyngeal fatty infiltration in obstructive sleep apnea patients: a histologic study. Ann Otolog Rhinol Laryngol. 1998;107:170–4.

    Article  CAS  Google Scholar 

  73. Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev. 2004;84:649–98.

    Article  CAS  PubMed  Google Scholar 

  74. Zohar Y, Grusko I, Sulkes J, Melloul MM. Oropharyngeal scintigraphy: a computerized analysis of swallowing in patients with obstructive sleep apnea. Laryngoscope. 1998;108:37–41.

    Article  CAS  PubMed  Google Scholar 

  75. Teramoto S, Sudo E, Matsuse T, Ohga E, Ishii T, et al. Impaired swallowing reflex in patients with obstructive sleep apnea syndrome. Chest. 1999;116:17–21.

    Article  CAS  PubMed  Google Scholar 

  76. Jäghagen EL, Berggren D, Isberg A. Swallowing dysfunction related to snoring: a videoradiographic study. Acta Otolaryngol. 2000;120:438–43.

    Article  PubMed  Google Scholar 

  77. Levring Jaghagen E, Franklin KA, Isberg A. Snoring, sleep apnoea and swallowing dysfunction: a videoradiographic study. Dentomaxillofac Radiol. 2003;32:311–6.

    Article  CAS  PubMed  Google Scholar 

  78. Valbuza JS, de Oliveira MM, Zancanella E, Conti CF, Prado LB, et al. Swallowing dysfunction related to obstructive sleep apnea: a nasal fibroscopy pilot study. Sleep Breath. 2011;15:209–13.

    Article  PubMed  Google Scholar 

  79. Okada S, Ouchi Y, Teramoto S. Nasal continuous positive airway pressure and weight loss improve swallowing reflex in patients with obstructive sleep apnea syndrome. Respiration. 2000;67:464–6.

    Article  CAS  PubMed  Google Scholar 

  80. Puhan MA, Suarez A, Lo Cascio C, Zahn A, Heitz M, et al. Didgeridoo playing as alternative treatment for obstructive sleep apnoea syndrome: randomised controlled trial. Br Med J (Clin Res Ed). 2006;332:266–70.

    Article  Google Scholar 

  81. Podnar S, Dolenc Groselj L. Neuropathic changes of the genioglossus muscle in patients with snoring and obstructive sleep apnoea. Lisbon, Portugal; 2010

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Julian P. Saboisky, Jane E. Butler, Billy L. Luu and Simon C. Gandevia have received a NHMRC grant.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian P. Saboisky.

Additional information

This article is a part of the Topical Collection on Sleep

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saboisky, J.P., Butler, J.E., Luu, B.L. et al. Neurogenic Changes in the Upper Airway of Obstructive Sleep Apnoea. Curr Neurol Neurosci Rep 15, 12 (2015). https://doi.org/10.1007/s11910-015-0537-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-015-0537-1

Keywords

Navigation