Skip to main content

Advertisement

Log in

An Update and Review of the Treatment of Myoclonus

  • Movement Disorders (M Okun, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Recent advances in medications and surgical therapy for neurological disorders may offer new therapeutic options for the treatment of myoclonus. Appropriate therapy for myoclonus depends on the etiology, and in some cases, myoclonus can improve when the provoking cause is eliminated. When the underlying cause for the movements is not immediately reversible, localization, disease pathophysiology, and etiology may each play a role in determining the most appropriate symptomatic treatment of disabling myoclonic jerks. While the use of many agents is still based on small, open-label case series and anecdotes, there is a growing body of evidence from head-to-head comparative trials in several types of myoclonus that may help guide therapy. New therapies for refractory myoclonus, including sodium oxybate and even deep brain stimulation, are also being explored with increasing enthusiasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fahn S, Jankovic J, Hallett M. Principles and practice of movement disorders. 2nd ed. 2011, Edinburgh; New York: Elsevier/Saunders. vii, 548 p.

  2. Marsden CD, Hallett M, Fahn S. The nosology and pathophysiology of myoclonus. Movement Disorders, ed. C.D. Marsden and S. Fahn. 1982, London: Butterworths.

  3. Espay AJ, Chen R. Myoclonus. Continuum. 2013;19(5 Movement Disorders):1264–86. This review approaches treatment of myoclonus from an etiology-specific algorithm, which can be clinically useful. It also has examples of the physiology associated with various types of myoclonus.

    PubMed  Google Scholar 

  4. Caviness JN. Treatment of myoclonus. Neurother J Am Soc Exp NeuroTher. 2014;11(1):188–200. This is a good review of the classification and treatment of myoclonus with emphasis on the neurophysiologic classification, including examples of surface EMG, EEG, and EEG-EMG back-averaging in various types of myoclonus.

    CAS  Google Scholar 

  5. Brown P et al. Intrahemispheric and interhemispheric spread of cerebral cortical myoclonic activity and its relevance to epilepsy. Brain J Neurol. 1991;114(Pt 5):2333–51.

    Google Scholar 

  6. Rossi Sebastiano D et al. Cortical myoclonus in childhood and juvenile onset Huntington’s disease. Parkinsonism Relat Disord. 2012;18(6):794–7.

    PubMed  Google Scholar 

  7. Obeso JA. Therapy of myoclonus. Clin Neurosci. 1995;3(4):253–7.

    PubMed  Google Scholar 

  8. Fahn S. Posthypoxic action myoclonus: review of the literature and report of two new cases with response to valproate and estrogen. Adv Neurol. 1979;26:49–84.

    CAS  PubMed  Google Scholar 

  9. Saft C et al. Dose-dependent improvement of myoclonic hyperkinesia due to valproic acid in eight Huntington’s disease patients: a case series. BMC Neurol. 2006;6:11.

    PubMed Central  PubMed  Google Scholar 

  10. Brown P et al. Effectiveness of piracetam in cortical myoclonus. Mov Disord Off J Mov Disord Soc. 1993;8(1):63–8.

    CAS  Google Scholar 

  11. Koskiniemi M et al. Piracetam relieves symptoms in progressive myoclonus epilepsy: a multicentre, randomised, double blind, crossover study comparing the efficacy and safety of three dosages of oral piracetam with placebo. J Neurol Neurosurg Psychiatry. 1998;64(3):344–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Obeso JA et al. Piracetam in the treatment of different types of myoclonus. Clin Neuropharmacol. 1988;11(6):529–36.

    CAS  PubMed  Google Scholar 

  13. Frucht SJ et al. A pilot tolerability and efficacy study of levetiracetam in patients with chronic myoclonus. Neurology. 2001;57(6):1112–4.

    CAS  PubMed  Google Scholar 

  14. Genton P, Gelisse P. Antimyoclonic effect of levetiracetam. Epileptic Disord Int Epilepsy J Videotape. 2000;2(4):209–12.

    CAS  Google Scholar 

  15. Magaudda A, Gelisse P, Genton P. Antimyoclonic effect of levetiracetam in 13 patients with Unverricht-Lundborg disease: clinical observations. Epilepsia. 2004;45(6):678–81.

    CAS  PubMed  Google Scholar 

  16. Cho JW, Lee JH. Suppression of myoclonus in corticobasal degeneration by levetiracetam. J Mov Disord. 2014;7(1):28–30.

    PubMed Central  PubMed  Google Scholar 

  17. Kovacs T et al. Levetiracetam reduces myoclonus in corticobasal degeneration: report of two cases. J Neural Transm. 2009;116(12):1631–4. The authors report a small series of two cases of corticobasal degeneration where levetiracetam produced a marked reduction in myoclonus on the UMRS when assessed by a blinded video rater. Doses were 1000 to 1500 mg/day and the effect lasted at least 3 years.

    PubMed  Google Scholar 

  18. Orsucci D et al. Levetiracetam-responsive myoclonus in spinocerebellar ataxia type 15. Mov Disord. 2013;28(10):1465.

    CAS  PubMed  Google Scholar 

  19. Biton V et al. Brivaracetam as adjunctive treatment for uncontrolled partial epilepsy in adults: a phase III randomized, double-blind, placebo-controlled trial. Epilepsia. 2014;55(1):57–66. This study is a randomized, double-blind, placebo-controlled trial showing a reduction by 22% in seizure frequency in epilepsy patients with medication-refractory epilepsy. Further study should be done on brivaracetam for myoclonus.

    CAS  PubMed  Google Scholar 

  20. Tai KK, Truong DD. Brivaracetam is superior to levetiracetam in a rat model of post-hypoxic myoclonus. J Neural Transm. 2007;114(12):1547–51.

    CAS  PubMed  Google Scholar 

  21. Goldberb MA, Dorman JD. Intention myoclonus: successful treatment with clonazepam. Neurology. 1976;26(1):24–6.

  22. Obeso JA et al. The treatment of severe action myoclonus. Brain J Neurol. 1989;112(Pt 3):765–77.

    Google Scholar 

  23. Kyllerman M, Ben-Menachem E. Zonisamide for progressive myoclonus epilepsy: long-term observations in seven patients. Epilepsy Res. 1998;29(2):109–14.

    CAS  PubMed  Google Scholar 

  24. Yoshimura I et al. Long-term observations of two siblings with Lafora disease treated with zonisamide. Epilepsy Res. 2001;46(3):283–7.

    CAS  PubMed  Google Scholar 

  25. Demir CF, Ozdemir HH, Mungen B. Efficacy of topiramate as add-on therapy in two different types of progressive myoclonic epilepsy. Acta Med (Hradec Kralove). 2013;56(1):36–8.

    Google Scholar 

  26. Miyahara A et al. Reassessment of phenytoin for treatment of late stage progressive myoclonus epilepsy complicated with status epilepticus. Epilepsy Res. 2009;84(2–3):201–9.

    CAS  PubMed  Google Scholar 

  27. Genton P, Gelisse P, Crespel A. Lack of efficacy and potential aggravation of myoclonus with lamotrigine in Unverricht-Lundborg disease. Epilepsia. 2006;47(12):2083–5.

    CAS  PubMed  Google Scholar 

  28. Gelisse P et al. Worsening of negative myoclonus by lamotrigine in a case of idiopathic focal epilepsy of children with long-term follow-up. Brain and Development. 2012;34(3):248–50.

    PubMed  Google Scholar 

  29. Frucht SJ et al. A single-blind, open-label trial of sodium oxybate for myoclonus and essential tremor. Neurology. 2005;65(12):1967–9.

    CAS  PubMed  Google Scholar 

  30. Kobayashi K et al. Thalamic deep brain stimulation for the treatment of action myoclonus caused by perinatal anoxia. Stereotact Funct Neurosurg. 2010;88(4):259–63.

    PubMed  Google Scholar 

  31. Yamada K et al. Gpi pallidal stimulation for Lance-Adams syndrome. Neurology. 2011;76(14):1270–2. This case of GPi DBS for posthypoxic myoclonus (Lance-Adams syndrome) showed a significant reduction in the frequency of myoclonic jerks. As discussed above, the localization was not physiologically confirmed but the article may be pertinent for discussion.

    PubMed  Google Scholar 

  32. Caviness JN, Brown P. Myoclonus: current concepts and recent advances. Lancet Neurol. 2004;3(10):598–607.

    PubMed  Google Scholar 

  33. Marson AG et al. The SANAD study of effectiveness of valproate, lamotrigine, or topiramate for generalised and unclassifiable epilepsy: an unblinded randomised controlled trial. Lancet. 2007;369(9566):1016–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Wallace SJ. Myoclonus and epilepsy in childhood: a review of treatment with valproate, ethosuximide, lamotrigine and zonisamide. Epilepsy Res. 1998;29(2):147–54.

    CAS  PubMed  Google Scholar 

  35. Machado RA et al. Efficacy and tolerability of lamotrigine in juvenile myoclonic epilepsy in adults: a prospective, unblinded randomized controlled trial. Seizure J Br Epilepsy Assoc. 2013;22(10):846–55.

    Google Scholar 

  36. Bodenstein-Sachar H et al. Outcome of lamotrigine treatment in juvenile myoclonic epilepsy. Acta Neurol Scand. 2011;124(1):22–7.

    CAS  PubMed  Google Scholar 

  37. Beran RG et al. Double-blind, placebo-controlled, crossover study of lamotrigine in treatment-resistant generalised epilepsy. Epilepsia. 1998;39(12):1329–33.

    CAS  PubMed  Google Scholar 

  38. Carrazana EJ, Wheeler SD. Exacerbation of juvenile myoclonic epilepsy with lamotrigine. Neurology. 2001;56(10):1424–5.

    CAS  PubMed  Google Scholar 

  39. Verrotti A et al. Levetiracetam in juvenile myoclonic epilepsy: long-term efficacy in newly diagnosed adolescents. Dev Med Child Neurol. 2008;50(1):29–32.

    PubMed  Google Scholar 

  40. Specchio N et al. Effects of levetiracetam on EEG abnormalities in juvenile myoclonic epilepsy. Epilepsia. 2008;49(4):663–9.

    PubMed  Google Scholar 

  41. Levisohn PM, Holland KD. Topiramate or valproate in patients with juvenile myoclonic epilepsy: a randomized open-label comparison. Epilepsy Behav E&B. 2007;10(4):547–52.

    Google Scholar 

  42. Glauser TA et al. Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy: initial monotherapy outcomes at 12 months. Epilepsia. 2013;54(1):141–55.

  43. Kojovic M, Cordivari C, Bhatia K. Myoclonic disorders: a practical approach for diagnosis and treatment. Ther Adv Neurol Disord. 2011;4(1):47–62.

    PubMed Central  PubMed  Google Scholar 

  44. Esposito M et al. Idiopathic spinal myoclonus: a clinical and neurophysiological assessment of a movement disorder of uncertain origin. Mov Disord Off J Mov Disord Soc. 2009;24(16):2344–9.

    Google Scholar 

  45. van der Salm SM et al. Axial jerks: a clinical spectrum ranging from propriospinal to psychogenic myoclonus. J Neurol. 2010;257(8):1349–55. The authors report that 34 of 35 propriospinal myoclonus cases referred to their center were psychogenic based on clinical clues, inconsistent polymyography, or the presence of Bereitschaftspotential and that tic characteristics were also noted in many cases.

    PubMed Central  PubMed  Google Scholar 

  46. Roze E et al. Propriospinal myoclonus revisited: clinical, neurophysiologic, and neuroradiologic findings. Neurology. 2009;72(15):1301–9. The evaluation and treatment of 10 patients with secondary or presumed secondary (not psychogenic) myoclonus is reported. Zonisamide and levetiracetam offered some benefit when clonazepam was not helpful.

    CAS  PubMed  Google Scholar 

  47. Hallett M et al. Reticular reflex myoclonus: a physiological type of human post-hypoxic myoclonus. J Neurol Neurosurg Psychiatry. 1977;40(3):253–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Wong A. An update on opsoclonus. Curr Opin Neurol. 2007;20(1):25–31.

    CAS  PubMed  Google Scholar 

  49. Jang W et al. Reversible propriospinal myoclonus due to thoracic disc herniation: long-term follow-up. J Neurol Sci. 2012;313(1–2):32–4.

    PubMed  Google Scholar 

  50. Shprecher D, Silberstein H, Kurlan R. Propriospinal myoclonus due to cord compression in the absence of myelopathy. Mov Disord Off J Mov Disord Soc. 2010;25(8):1100–1.

    Google Scholar 

  51. Zamidei L et al. Propriospinal myoclonus following intrathecal bupivacaine in hip surgery: a case report. Minerva Anestesiol. 2010;76(4):290–3.

    CAS  PubMed  Google Scholar 

  52. Maltete D et al. TENS for the treatment of propriospinal myoclonus. Mov Disord Off J Mov Disord Soc. 2008;23(15):2256–7.

    Google Scholar 

  53. Wojtecki L et al. Transient improvement of psychogenic (proprio-)spinal-like myoclonus to electrical nerve stimulation. Mov Disord Off J Mov Disord Soc. 2009;24(13):2024–5.

    Google Scholar 

  54. Quinn NP. Essential myoclonus and myoclonic dystonia. Mov Disord Off J Mov Disord Soc. 1996;11(2):119–24.

    CAS  Google Scholar 

  55. Przuntek H, Muhr H. Essential familial myoclonus. J Neurol. 1983;230(3):153–62.

    CAS  PubMed  Google Scholar 

  56. Kuncel AM et al. Myoclonus and tremor response to thalamic deep brain stimulation parameters in a patient with inherited myoclonus-dystonia syndrome. Clin Neurol Neurosurg. 2009;111(3):303–6.

    PubMed Central  PubMed  Google Scholar 

  57. Trottenberg T et al. Neurostimulation of the ventral intermediate thalamic nucleus in inherited myoclonus-dystonia syndrome. Mov Disord Off J Mov Disord Soc. 2001;16(4):769–71.

    CAS  Google Scholar 

  58. Azoulay-Zyss J et al. Bilateral deep brain stimulation of the pallidum for myoclonus-dystonia due to epsilon-sarcoglycan mutations: a pilot study. Arch Neurol. 2011;68(1):94–8.

    PubMed  Google Scholar 

  59. Contarino MF et al. Effect of pallidal deep brain stimulation on psychiatric symptoms in myoclonus-dystonia due to epsilon-sarcoglycan mutations. Arch Neurol. 2011;68(8):1087–8. author reply 1088–9.

    PubMed  Google Scholar 

  60. Gruber D et al. Pallidal and thalamic deep brain stimulation in myoclonus-dystonia. Mov Disord Off J Mov Disord Soc. 2010;25(11):1733–43.

    Google Scholar 

  61. Starr PA. Deep brain stimulation for other tremors, myoclonus, and chorea. Handb Clin Neurol. 2013;116:209–15.

    PubMed  Google Scholar 

  62. Rughani AI, Lozano AM. Surgical treatment of myoclonus dystonia syndrome. Mov Disord Off J Mov Disord Soc. 2013;28(3):282–7. This systematic review of all reported cases of myoclonus dystonia syndrome treated with deep brain stimulation offers a comparison between brain targets (GPi vs. Vim thalamus). It suggests that myoclonus improved similarly with both brain targets, though there was a paucity of studies reporting on outcomes with Vim DBS.

    Google Scholar 

  63. Weissbach A et al. Prominent psychiatric comorbidity in the dominantly inherited movement disorder myoclonus-dystonia. Parkinsonism Relat Disord. 2013;19(4):422–5.

    PubMed  Google Scholar 

  64. van Tricht MJ et al. Cognition and psychopathology in myoclonus-dystonia. J Neurol Neurosurg Psychiatry. 2012;83(8):814–20.

    PubMed  Google Scholar 

  65. Kuhn AA, et al. Early surgical treatment in a case of myoclonus dystonia syndrome. J Child Neurol. 2014. Treatment for Myoclonus-dystonia in a 17 year old is described in this case report. His UMRS improved by 89 % and there was a marked improvement in quality of life subjectively, indicating that early treatment for disabled patients should be studied further.

  66. Bataller L et al. Clinical outcome in adult onset idiopathic or paraneoplastic opsoclonus-myoclonus. Brain J Neurol. 2001;124(Pt 2):437–43.

    CAS  Google Scholar 

  67. Pranzatelli MR et al. B cell depletion therapy for new-onset opsoclonus-myoclonus. Mov Disord Off J Mov Disord Soc. 2010;25(2):238–42.

    Google Scholar 

  68. Ketterl TG et al. Ofatumumab for refractory opsoclonus-myoclonus syndrome following treatment of neuroblastoma. Pediatr Blood Cancer. 2013;60(12):E163–5. A case report of a patient with ANNA-1 antibody associated opsoclonus-myoclonus syndrome refractory to rituximab responded to a combination of ofatumumab and methotrexate, suggesting another possible treatment option to study in difficult cases.

    PubMed  Google Scholar 

  69. Bartos A. Effective high-dose clonazepam treatment in two patients with opsoclonus and myoclonus: GABAergic hypothesis. Eur Neurol. 2006;56(4):240–2.

    PubMed  Google Scholar 

  70. Caviness JN et al. The movement disorder of adult opsoclonus. Mov Disord Off J Mov Disord Soc. 1995;10(1):22–7.

    CAS  Google Scholar 

  71. Tijssen MA et al. The effects of clonazepam and vigabatrin in hyperekplexia. J Neurol Sci. 1997;149(1):63–7.

    CAS  PubMed  Google Scholar 

  72. Chadwick D et al. Clinical, biochemical, and physiological features distinguishing myoclonus responsive to 5-hydroxytryptophan, tryptophan with a monoamine oxidase inhibitor, and clonazepam. Brain J Neurol. 1977;100(3):455–87.

    CAS  Google Scholar 

  73. Caviness JN. Segmental myoclonus. In: Albanese A, Jankovic J, editors. Hyperkinetic movement disorders. Hoboken: John Wiley & Sons; 2012. p. 221–35.

    Google Scholar 

  74. Biller J, Espay AJ. Nosography of the “essential”: volitional palatal tremor. Neurology. 2013;81(8):772–3.

    PubMed Central  PubMed  Google Scholar 

  75. Stamelou M et al. Psychogenic palatal tremor may be underrecognized: reappraisal of a large series of cases. Mov Disord. 2012;27(9):1164–8. In a series of 17 patients with palatal tremor (formerly “myoclonus”), 10 had isolated palatal tremor. 70% of these had a psychogenic etiology, suggesting that psychogenic essential palatal tremor is more common than previously thought.

    PubMed Central  PubMed  Google Scholar 

  76. Jankovic J, Pardo R. Segmental myoclonus. Clinical and pharmacologic study. Arch Neurol. 1986;43(10):1025–31.

    CAS  PubMed  Google Scholar 

  77. Lagueny A et al. Stimulus-sensitive spinal segmental myoclonus improved with injections of botulinum toxin type A. Mov Disord. 1999;14(1):182–5.

    CAS  PubMed  Google Scholar 

  78. Polo KB, Jabbari B. Effectiveness of botulinum toxin type A against painful limb myoclonus of spinal cord origin. Mov Disord. 1994;9(2):233–5.

    CAS  PubMed  Google Scholar 

  79. Keswani SC et al. Amelioration of spinal myoclonus with levetiracetam. J Neurol Neurosurg Psychiatry. 2002;73(4):457–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Chiodo AE, Saval A. Intrathecal baclofen for the treatment of spinal myoclonus: a case series. J Spinal Cord Med. 2012;35(1):64–7.

    PubMed Central  PubMed  Google Scholar 

  81. Penney SE, Bruce IA, Saeed SR. Botulinum toxin is effective and safe for palatal tremor: a report of five cases and a review of the literature. J Neurol. 2006;253(7):857–60.

    CAS  PubMed  Google Scholar 

  82. Krause E, Heinen F, Gurkov R. Difference in outcome of botulinum toxin treatment of essential palatal tremor in children and adults. Am J Otolaryngol. 2010;31(2):91–5.

    CAS  PubMed  Google Scholar 

  83. Scott BL, Evans RW, Jankovic J. Treatment of palatal myoclonus with sumatriptan. Mov Disord. 1996;11(6):748–51.

    CAS  PubMed  Google Scholar 

  84. Jabbari B et al. Effectiveness of trihexyphenidyl against pendular nystagmus and palatal myoclonus: evidence of cholinergic dysfunction. Mov Disord. 1987;2(2):93–8.

    CAS  PubMed  Google Scholar 

  85. Bakheit AM, Behan PO. Palatal myoclonus successfully treated with clonazepam. J Neurol Neurosurg Psychiatry. 1990;53(9):806.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Badia L, Parikh A, Brookes GB. Management of middle ear myoclonus. J Laryngol Otol. 1994;108(5):380–2.

    CAS  PubMed  Google Scholar 

  87. Tan EK et al. Role of magnetic resonance imaging and magnetic resonance angiography in patients with hemifacial spasm. Ann Acad Med Singap. 1999;28(2):169–73.

    CAS  PubMed  Google Scholar 

  88. Martinelli P, Giuliani S, Ippoliti M. Hemifacial spasm due to peripheral injury of facial nerve: a nuclear syndrome? Mov Disord. 1992;7(2):181–4.

    CAS  PubMed  Google Scholar 

  89. Yoshimura DM et al. Treatment of hemifacial spasm with botulinum toxin. Muscle Nerve. 1992;15(9):1045–9.

    CAS  PubMed  Google Scholar 

  90. Alexander GE, Moses 3rd H. Carbamazepine for hemifacial spasm. Neurology. 1982;32(3):286–7.

    CAS  PubMed  Google Scholar 

  91. Daniele O et al. Gabapentin in the treatment of hemifacial spasm. Acta Neurol Scand. 2001;104(2):110–2.

    CAS  PubMed  Google Scholar 

  92. Kaye AH, Adams CB. Hemifacial spasm: a long term follow-up of patients treated by posterior fossa surgery and facial nerve wrapping. J Neurol Neurosurg Psychiatry. 1981;44(12):1100–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Terada K et al. Presence of Bereitschaftspotential preceding psychogenic myoclonus: clinical application of jerk-locked back averaging. J Neurol Neurosurg Psychiatry. 1995;58(6):745–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Hinson VK et al. Single-blind clinical trial of psychotherapy for treatment of psychogenic movement disorders. Parkinsonism Relat Disord. 2006;12(3):177–80.

    PubMed  Google Scholar 

  95. Kompoliti K et al. Immediate vs. delayed treatment of psychogenic movement disorders with short term psychodynamic psychotherapy: randomized clinical trial. Parkinsonism Relat Disord. 2014;20(1):60–3. Fifteen patients with a psychogenic movement disorder were followed by a neurologist but treated with immediate (n = 7) or delayed (n = 8) psychodynamic psychotherapy. Time was the only factor in PMD improvement, independent of group assignment.

    PubMed  Google Scholar 

  96. Goldberg S et al. Serotonin modulation of cerebral glucose metabolism in normal aging. Neurobiol Aging. 2004;25(2):167–74.

    CAS  PubMed  Google Scholar 

  97. Bosch OG et al. Reconsidering GHB: orphan drug or new model antidepressant? J Psychopharmacol. 2012;26(5):618–28.

    PubMed  Google Scholar 

  98. Frucht SJ et al. A pilot tolerability and efficacy trial of sodium oxybate in ethanol-responsive movement disorders. Mov Disord Off J Mov Disord Soc. 2005;20(10):1330–7. This case series includes two patients with ethanol-responsive myoclonus-dystonia (SGCE mutation positive) who had >50% improvement in the UMRS (blinded video rater) when treated with sodium oxybate at 2.5 g TID or 3.5 g BID.

    Google Scholar 

  99. Sumnall HR et al. Use, function, and subjective experiences of gamma-hydroxybutyrate (GHB). Drug Alcohol Depend. 2008;92(1–3):286–90.

    CAS  PubMed  Google Scholar 

  100. Loscher W. Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS drugs. 2002;16(10):669–94.

  101. McLean MJ, Macdonald RL. Sodium valproate, but not ethosuximide, produces use- and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther. 1986;237(3):1001–11.

    CAS  PubMed  Google Scholar 

  102. Whittle SR, Turner AJ. Effects of anticonvulsants on the formation of gamma-hydroxybutyrate from gamma-aminobutyrate in rat brain. J Neurochem. 1982;38(3):848–51.

    CAS  PubMed  Google Scholar 

  103. Nanau RM, Neuman MG. Adverse drug reactions induced by valproic acid. Clin Biochem. 2013;46(15):1323–38.

    CAS  PubMed  Google Scholar 

  104. Daniels V et al. Modulation of the conformational state of the SV2A protein by an allosteric mechanism as evidenced by ligand binding assays. Br J Pharmacol. 2013;169(5):1091–101.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Mbizvo GK, et al. The adverse effects profile of levetiracetam in epilepsy: a more detailed look. Int J Neurosci. 2013.

  106. Mula M. Brivaracetam for the treatment of epilepsy in adults. Expert Rev Neurother. 2014;14(4):361–5.

    CAS  PubMed  Google Scholar 

  107. Biton V. Clinical pharmacology and mechanism of action of zonisamide. Clin Neuropharmacol. 2007;30(4):230–40.

    CAS  PubMed  Google Scholar 

  108. Greenfield Jr LJ. Molecular mechanisms of antiseizure drug activity at GABAA receptors. Seizure. 2013;22(8):589–600.

    PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Kelly Mills has received paid travel accommodations from the Movement Disorders Society.

Zoltan Mari has received consultancy fees from Medtronic, Inc., US World Meds, and Ipsen. Dr. Mari has also received grants from the National Institutes of Health, the National Parkinson Foundation, the Michael J. Fox Foundation, Avid Radiopharmaceuticals, the Dystonia Medical Research Foundation, US World Meds, Solvay Pharmaceuticals Inc., Weill Medical College of Cornell University, and Merz Pharmaceuticals.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly Mills.

Additional information

This article is part of the Topical Collection on Movement Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mills, K., Mari, Z. An Update and Review of the Treatment of Myoclonus. Curr Neurol Neurosci Rep 15, 512 (2015). https://doi.org/10.1007/s11910-014-0512-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-014-0512-2

Keywords

Navigation