Skip to main content

Advertisement

Log in

Nanotheragnostic Applications for Ischemic and Hemorrhagic Strokes: Improved Delivery for a Better Prognosis

  • Stroke (HP Adams, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Stroke is the second leading cause of death worldwide and a major cause of long-term severe disability representing a global health burden and one of the highly researched medical conditions. Nanostructured material synthesis and engineering have been recently developed and have been largely integrated into many fields including medicine. Recent studies have shown that nanoparticles might be a valuable tool in stroke. Different types, shapes, and sizes of nanoparticles have been used for molecular/biomarker profiling and imaging to help in early diagnosis and prevention of stroke and for drug/RNA delivery for improved treatment and neuroprotection. However, these promising applications have limitations, including cytotoxicity, which hindered their adoption into clinical use. Future research is warranted to fully develop and effectively and safely translate nanoparticles for stroke diagnosis and treatment into the clinic. This work will discuss the emerging role of nanotheragnostics in stroke diagnosis and treatment applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

NP:

Nanoparticle

SAH:

Subarachnoid hemorrhage

CT:

Computed tomography

MRI:

Magnetic resonance imaging

DWI:

Diffusion-weighted imaging

BBB:

Blood-brain barrier

CNS:

Central nervous system

SERS:

Surface-enhanced Raman scattering

PTT:

Photothermal therapy

tPA:

Tissue plasminogen activator

ROS:

Reactive oxygen species

HHAuNPs:

Hyaluronic acids (HA) immobilized on gold nanoparticles

MCAO:

Middle cerebral artery occlusion

USPIO:

Ultrasmall superparamagnetic particles of iron oxide

ELISA:

Enzyme-linked immunosorbent assays

SR-PCT:

Synchrotron radiation X-ray phase computed tomography

MPI:

Magnetic particle imaging

RBCs:

Red blood cells

HO@MNPs:

Magnetic nanoparticles containing simple hydroxy groups

PtPFPP:

Pt(II)-tetrakis(pentafluorophenyl) porphyrin

PA1:

Dye

PA2:

Poly(9,9-diheptylfluo-rene-alt-9,9-di-p-tolyl-9H-fluorene)

SPION:

Superparamagnetic iron oxide nanoparticle

QD:

Quantum dot

FA:

Folic acid

SPIO:

Superparamagnetic ion oxide

BrdU:

Bromodeoxyuridine

NSC:

Neural stem cell

PUE:

Puerarin

PBCN:

Poly(butylcyanoacrylate) nanoparticles

shRNA:

Short hairpin RNA

PEG:

Poly(ethylene-co-glycol)

DGL:

Dermorphin-PEG-dendigraft poly-l-lysine

Ask1:

Apoptosis signal-regulating kinase 1

RNAi:

RNA interference

PLGA-b-PEG:

Poly-(lactide-co-glycolide)-polyethyleneglycol nanoparticles

T3:

Triiodothyronine

CBSA-PEG-TIIA-NPs:

Cationic bovine serum albumin-conjugated tanshinone IIA PEGylated nanoparticles

TIIA:

Tanshinone IIA

MPO:

Myeloperoxidase

TNF-α:

Tumor necrosis alpha

IL-1β:

Interleukin 1 beta

IL-6:

Interleukin 6

IL-10:

Interleukin 10

TGF-β1:

Transforming growth factor beta 1

iNOS:

Inducible nitric oxide synthase

PPARγ:

Enhanced peroxisome proliferator-activated receptor gamma

PLNs:

PEGylated-lipid nanoparticles

MRgFUS:

MRI-guided focused ultrasound

BNPs:

Brain-penetrating nanoparticles

PNIPAM:

Polymeric N-isopropyl acryl amide

DMC:

Demethoxycurcumin

BDMC:

Bisdemethoxycurcumin

SOD:

Superoxide dismutase

H2O2 :

Hydrogen peroxide

QC:

Quercetin

EGF:

Epidermal growth factor

PCBs:

Polychlorinated biphenyls

TLR4:

Toll-like receptor 4

TRAF6:

Tumor necrosis factor-associated factor 6

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Johnston SC, Mendis S, Mathers CD. Global variation in stroke burden and mortality: estimates from monitoring, surveillance, and modelling. Lancet Neurol. 2009;8(4):345–54.

    PubMed  Google Scholar 

  2. Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, et al. Heart disease and stroke statistics—2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008;117(4):e25–e146.

    PubMed  Google Scholar 

  3. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, et al. Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet. 2014;383(9913):245–54.

    PubMed Central  PubMed  Google Scholar 

  4. Eltzschig HK, Eckle T. Ischemia and reperfusion—from mechanism to translation. Nat Med. 2011;17(11):1391–401.

    PubMed  CAS  Google Scholar 

  5. Emiru T, Bershad EM, Zantek ND, Datta YH, Rao GH, Hartley EW, et al. Intracerebral hemorrhage: a review of coagulation function. Clin Appl Thromb Hemost Off J Int Acad Clin Appl Thromb Hemost. 2013;19(6):652–62.

    Google Scholar 

  6. Al-Shahi Salman R, Labovitz DL, Stapf C. Spontaneous intracerebral haemorrhage. BMJ (Clin Res ed). 2009;339:b2586.

    Google Scholar 

  7. Budohoski KP, Czosnyka M, Kirkpatrick PJ, Smielewski P, Steiner LA, Pickard JD. Clinical relevance of cerebral autoregulation following subarachnoid haemorrhage. Nat Rev Neurol. 2013;9(3):152–63.

    PubMed  CAS  Google Scholar 

  8. Maniyar FH, Goadsby PJ. Brain hemorrhage: clinical high-risk factors for subarachnoid hemorrhage. Nat Rev Neurol. 2011;7(3):134–5.

    PubMed  Google Scholar 

  9. Brazzelli M, Sandercock PA, Chappell FM, Celani MG, Righetti E, Arestis N, et al. Magnetic resonance imaging versus computed tomography for detection of acute vascular lesions in patients presenting with stroke symptoms. Cochrane Database Syst Rev. 2009;(4):Cd007424.

  10. Smajlovic D, Sinanovic O. Sensitivity of the neuroimaging techniques in ischemic stroke. Med Arh. 2004;58(5):282–4.

    PubMed  Google Scholar 

  11. Chalela JA, Kidwell CS, Nentwich LM, Luby M, Butman JA, Demchuk AM, et al. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet. 2007;369(9558):293–8.

    PubMed Central  PubMed  Google Scholar 

  12. Latchaw RE, Alberts MJ, Lev MH, Connors JJ, Harbaugh RE, Higashida RT, et al. Recommendations for imaging of acute ischemic stroke: a scientific statement from the American Heart Association. Stroke J Cereb Circ. 2009;40(11):3646–78.

    Google Scholar 

  13. Merino JG, Warach S. Imaging of acute stroke. Nat Rev Neurol. 2010;6(10):560–71.

    PubMed  Google Scholar 

  14. Warlow C, Sudlow C, Dennis M, Wardlaw J, Sandercock P. Stroke. Lancet. 2003;362(9391):1211–24.

    PubMed  Google Scholar 

  15. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57(2):173–85.

    PubMed  CAS  Google Scholar 

  16. Essig M, Dinkel J, Gutierrez JE. Use of contrast media in neuroimaging. Magn Reson Imaging Clin N Am. 2012;20(4):633–48.

    PubMed  Google Scholar 

  17. Sasaki Y, Akiyoshi K. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chem Rec (New York, NY). 2010;10(6):366–76.

    CAS  Google Scholar 

  18. Kobeissy FH, Gulbakan B, Alawieh A, Karam P, Zhang Z, Guingab-Cagmat JD, et al. Post-genomics nanotechnology is gaining momentum: nanoproteomics and applications in life sciences. Omics J Integr Biol. 2014;18(2):111–31.

    CAS  Google Scholar 

  19. Giri K, Shameer K, Zimmermann MT, Saha S, Chakraborty PK, Sharma A, et al. Understanding protein-nanoparticle interaction: a new gateway to disease therapeutics. Bioconjug Chem. 2014;25(6):1078–90.

    PubMed  CAS  Google Scholar 

  20. Tsai N, Lee B, Kim A, Yang R, Pan R, Lee DK, et al. Nanomedicine for global health. J Lab Autom. 2014. doi:10.1177/2211068214538263.

  21. Whiteley W, Tseng MC, Sandercock P. Blood biomarkers in the diagnosis of ischemic stroke: a systematic review. Stroke J Cereb Circ. 2008;39(10):2902–9.

    Google Scholar 

  22. Kim TH, Lee S, Chen X. Nanotheranostics for personalized medicine. Expert Rev Mol Diagn. 2013;13(3):257–69.

    PubMed Central  PubMed  CAS  Google Scholar 

  23. An S, Kuang Y, Shen T, Li J, Ma H, Guo Y, et al. Brain-targeting delivery for RNAi neuroprotection against cerebral ischemia reperfusion injury. Biomaterials. 2013;34(35):8949–59. An et al. showed that shRNA could be delivered efficiently to the brain, when bound to nanoparticles, and they would suppress apoptosis and infarction.

    PubMed  CAS  Google Scholar 

  24. Hyun H, Lee K, Min KH, Jeon P, Kim K, Jeong SY, et al. Ischemic brain imaging using fluorescent gold nanoprobes sensitive to reactive oxygen species. J Control Release Off J Control Release Soc. 2013;170(3):352–7. Hyun et al. showed that hyaluronic acid labelled nanoparticles are able to accumulate in ischemic regions and detect ROS production and thus provide a more accurate identification of ischemic regions.

    CAS  Google Scholar 

  25. Ishii T, Fukuta T, Agato Y, Oyama D, Yasuda N, Shimizu K, et al. (2013) Nanoparticles accumulate in ischemic core and penumbra region even when cerebral perfusion is reduced. Biochemical and Biophysical Research Cummunications 430:1201–5.

  26. Kim DE, Kim JY, Sun IC, Schellingerhout D, Lee SK, Ahn CH, et al. Hyperacute direct thrombus imaging using computed tomography and gold nanoparticles. Ann Neurol. 2013;73(5):617–25. Kim et al. demonstrated that through gold nanoparticles, they are able to image thrombi and monitor their evolution and increase the efficiency of administering thrombolytic therapies.

    PubMed  CAS  Google Scholar 

  27. Lin KY, Kwong GA, Warren AD, Wood DK, Bhatia SN. Nanoparticles that sense thrombin activity as synthetic urinary biomarkers of thrombosis. ACS Nano. 2013;7(10):9001–9. Lin et al. provided a biomarker for thrombus formation via administering nanoparticles conjugated to thrombin-sensitive peptides which would break off and appear in the blood and urine as biomarkers for thrombus formation.

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Liu X, An C, Jin P, Liu X, Wang L. Protective effects of cationic bovine serum albumin-conjugated PEGylated tanshinone IIA nanoparticles on cerebral ischemia. Biomaterials. 2013;34(3):817–30.

    PubMed  CAS  Google Scholar 

  29. Lu YM, Huang JY, Wang H, Lou XF, Liao MH, Hong LJ, et al. Targeted therapy of brain ischaemia using Fas ligand antibody conjugated PEG-lipid nanoparticles. Biomaterials. 2014;35(1):530–7. Lu et al. showed that nanoparticles conjugated to Fas ligand are more efficient in entering the brain across the blood brain barrier and delivering the drug 3-n-butylphthalide, which had neuroprotective effects.

    PubMed  CAS  Google Scholar 

  30. Marinescu M, Chauveau F, Durand A, Riou A, Cho TH, Dencausse A, et al. Monitoring therapeutic effects in experimental stroke by serial USPIO-enhanced MRI. Eur Radiol. 2013;23(1):37–47.

    PubMed  Google Scholar 

  31. Marinescu M, Langer M, Durand A, Olivier C, Chabrol A, Rositi H, et al. Synchrotron radiation X-ray phase micro-computed tomography as a new method to detect iron oxide nanoparticles in the brain. Mol Imaging Biol MIB Off Publ Acad Mol Imaging. 2013;15(5):552–9. Marinescue et al. showed that SR-PCT is superior to MRI in detecting macrophages containing USPIOs and thus better imaging and detection of infarcted areas.

    CAS  Google Scholar 

  32. Mdzinarishvili A, Sutariya V, Talasila PK, Geldenhuys WJ, Sadana P. Engineering triiodothyronine (T3) nanoparticle for use in ischemic brain stroke. Drug Deliv Transl Res. 2013;3(4):309–17.

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Rahmer J, Antonelli A, Sfara C, Tiemann B, Gleich B, Magnani M, et al. Nanoparticle encapsulation in red blood cells enables blood-pool magnetic particle imaging hours after injection. Phys Med Biol. 2013;58(12):3965–77. Rahmer et al. showed that RBCs could be impregnated with USPIOs which would allow them to vissualise vessels in a 3D structure and detect any hemorrhage.

    PubMed  CAS  Google Scholar 

  34. Riegler J, Liew A, Hynes SO, Ortega D, O'Brien T, Day RM, et al. (2013) Superparamagnetic iron oxide nanoparticle targeting of MSCs in vascular injury. Biomaterials 34:1987–94.

  35. Wang Y, Cooke MJ, Sachewsky N, Morshead CM, Shoichet MS. Bioengineered sequential growth factor delivery stimulates brain tissue regeneration after stroke. J Control Release Off J Control Release Soc. 2013;172(1):1–11. Wang et al. were successful in using a hydrogel with nanoparticles containing EGF and EPO for suppression of inflammation and induction of neurogenesis when injected 4 days following stroke.

    CAS  Google Scholar 

  36. Wen X, Wang Y, Zhang F, Zhang X, Lu L, Shuai X, et al. In vivo monitoring of neural stem cells after transplantation in acute cerebral infarction with dual-modal MR imaging and optical imaging. Biomaterials. 2014;35(16):4627–35. Wen et al. demonstrated the ability to monitor grafted neural stem cells, labelled with polymerosomes, as they migrate and proliferate to the site of injury.

    PubMed  CAS  Google Scholar 

  37. Zhao LX, Liu AC, Yu SW, Wang ZX, Lin XQ, Zhai GX, et al. The permeability of puerarin loaded poly(butylcyanoacrylate) nanoparticles coated with polysorbate 80 on the blood-brain barrier and its protective effect against cerebral ischemia/reperfusion injury. Biol Pharm Bull. 2013;36(8):1263–70.

    PubMed  CAS  Google Scholar 

  38. Huang HC, Barua S, Sharma G, Dey SK, Rege K. Inorganic nanoparticles for cancer imaging and therapy. J Control Release Off J Control Release Soc. 2011;155(3):344–57.

    CAS  Google Scholar 

  39. Klostergaard J, Seeney CE. Magnetic nanovectors for drug delivery. Nanomedicine Nanotechnol Biol Med. 2012;8 Suppl 1:S37–50.

    CAS  Google Scholar 

  40. Owens 3rd DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102.

    PubMed  CAS  Google Scholar 

  41. van der Zee J. Heating the patient: a promising approach? Ann Oncol Off J Eur Soc Med Oncol ESMO. 2002;13(8):1173–84.

    Google Scholar 

  42. Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2(4):282–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  43. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B. 2005;109(29):13857–70.

    PubMed  CAS  Google Scholar 

  44. Link S, Mohamed MB, El-Sayed MA. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem. 1999;103(16):3073–7.

    CAS  Google Scholar 

  45. Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez Jr MP, et al. Organization of ‘nanocrystal molecules’ using DNA. Nature. 1996;382(6592):609–11.

    PubMed  CAS  Google Scholar 

  46. El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 2005;5(5):829–34.

    PubMed  CAS  Google Scholar 

  47. Qin Y. Silver-containing alginate fibres and dressings. Int Wound J. 2005;2(2):172–6.

    PubMed  Google Scholar 

  48. Atiyeh BS, Costagliola M, Hayek SN, Dibo SA. Effect of silver on burn wound infection control and healing: review of the literature. Burns J Int Soc Burn Injuries. 2007;33(2):139–48.

    Google Scholar 

  49. Lansdown AB. Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol. 2006;33:17–34.

    PubMed  CAS  Google Scholar 

  50. Schultz S, Smith DR, Mock JJ, Schultz DA. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc Natl Acad Sci U S A. 2000;97(3):996–1001.

    PubMed Central  PubMed  CAS  Google Scholar 

  51. Stepanov AL, Popok VN, Hole DE. Formation of metallic nanoparticles in silicate glass through ion implantation. Glas Phys Chem. 2002;28(2):90–5.

    CAS  Google Scholar 

  52. Oldenburg S, Averitt R, Westcott S, Halas N. Nanoengineering of optical resonances. Chem Phys Lett. 1998;288:243–7.

    CAS  Google Scholar 

  53. Prodan E, Lee A, Nordlander P. The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells. Chem Phys Lett. 2002;360:325–32.

    CAS  Google Scholar 

  54. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A. 2003;100(23):13549–54.

    PubMed Central  PubMed  CAS  Google Scholar 

  55. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263(5153):1600–3.

    PubMed  CAS  Google Scholar 

  56. Krishna R, Shivakumar H, Gowda D, Banerjee S. Nanoparticles: a novel colloidal drug delivery system. Indian J Educ Res. 2006;40:15–21.

    Google Scholar 

  57. Kesisoglou F, Panmai S, Wu Y. Nanosizing—oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev. 2007;59(7):631–44.

    PubMed  CAS  Google Scholar 

  58. Govender T, Stolnik S, Garnett MC, Illum L, Davis SS. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release Off J Control Release Soc. 1999;57(2):171–85.

    CAS  Google Scholar 

  59. Teeranachaideekul V, Junyaprasert VB, Souto EB, Muller RH. Development of ascorbyl palmitate nanocrystals applying the nanosuspension technology. Int J Pharm. 2008;354(1–2):227–34.

    PubMed  CAS  Google Scholar 

  60. Esmaeili F, Ghahremani MH, Esmaeili B, Khoshayand MR, Atyabi F, Dinarvand R. PLGA nanoparticles of different surface properties: preparation and evaluation of their body distribution. Int J Pharm. 2008;349(1–2):249–55.

    PubMed  CAS  Google Scholar 

  61. Singh S, Muthu MS. Preparation and characterization of nanoparticles containing an atypical antipsychotic agent. Nanomedicine (Lond). 2007;2(2):233–40.

    Google Scholar 

  62. Mittal G, Sahana DK, Bhardwaj V, Ravi Kumar MN. Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Release Off J Control Release Soc. 2007;119(1):77–85.

    CAS  Google Scholar 

  63. Yih TC, Al-Fandi M. Engineered nanoparticles as precise drug delivery systems. J Cell Biochem. 2006;97(6):1184–90.

    PubMed  CAS  Google Scholar 

  64. Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293–346.

    PubMed  CAS  Google Scholar 

  65. Cormode DP, Roessl E, Thran A, Skajaa T, Gordon RE, Schlomka JP, et al. Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology. 2010;256(3):774–82.

    PubMed Central  PubMed  Google Scholar 

  66. Sun IC, Eun DK, Koo H, Ko CY, Kim HS, Yi DK, et al. Tumor-targeting gold particles for dual computed tomography/optical cancer imaging. Angew Chem Int Ed Engl. 2011;50(40):9348–51.

    PubMed  CAS  Google Scholar 

  67. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM. Gold nanoparticles: a new X-ray contrast agent. Br J Radiol. 2006;79(939):248–53.

    PubMed  CAS  Google Scholar 

  68. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;1(3):325–7.

    PubMed  CAS  Google Scholar 

  69. Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P. Redox regulation of cell survival. Antioxid Redox Signal. 2008;10(8):1343–74.

    PubMed Central  PubMed  CAS  Google Scholar 

  70. Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2001;21(1):2–14.

    CAS  Google Scholar 

  71. Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci. 2003;4(5):399–415.

    PubMed  CAS  Google Scholar 

  72. Lee H, Lee K, Kim IK, Park TG. Synthesis, characterization, and in vivo diagnostic applications of hyaluronic acid immobilized gold nanoprobes. Biomaterials. 2008;29(35):4709–18.

    PubMed  CAS  Google Scholar 

  73. Lee K, Lee H, Lee KW, Park TG. Optical imaging of intracellular reactive oxygen species for the assessment of the cytotoxicity of nanoparticles. Biomaterials. 2011;32(10):2556–65.

    PubMed  CAS  Google Scholar 

  74. Mannhalter C. Biomarkers for arterial and venous thrombotic disorders. Hamostaseologie. 2014;34(2):115–20. 122–116, 128–130, passim.

    PubMed  CAS  Google Scholar 

  75. Pantoni L, Fierini F, Poggesi A. Thrombolysis in acute stroke patients with cerebral small vessel disease. Cerebrovasc Dis. 2014;37(1):5–13.

    PubMed  CAS  Google Scholar 

  76. Rother J, Ford GA, Thijs VN. Thrombolytics in acute ischaemic stroke: historical perspective and future opportunities. Cerebrovasc Dis. 2013;35(4):313–9.

    PubMed  Google Scholar 

  77. Ginsberg JS, Wells PS, Kearon C, Anderson D, Crowther M, Weitz JI, et al. Sensitivity and specificity of a rapid whole-blood assay for D-dimer in the diagnosis of pulmonary embolism. Ann Intern Med. 1998;129(12):1006–11.

    PubMed  CAS  Google Scholar 

  78. Davie EW, Kulman JD. An overview of the structure and function of thrombin. Semin Thromb Hemost. 2006;32 Suppl 1:3–15.

    PubMed  CAS  Google Scholar 

  79. Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17(7):796–808.

    PubMed Central  PubMed  CAS  Google Scholar 

  80. Stoll G, Bendszus M. Imaging of inflammation in the peripheral and central nervous system by magnetic resonance imaging. Neuroscience. 2009;158(3):1151–60.

    PubMed  CAS  Google Scholar 

  81. Desestret V, Brisset JC, Moucharrafie S, Devillard E, Nataf S, Honnorat J, et al. Early-stage investigations of ultrasmall superparamagnetic iron oxide-induced signal change after permanent middle cerebral artery occlusion in mice. Stroke J Cereb Circ. 2009;40(5):1834–41.

    Google Scholar 

  82. Chauveau F, Moucharrafie S, Wiart M, Brisset JC, Berthezene Y, Nighoghossian N, et al. In vivo MRI assessment of permanent middle cerebral artery occlusion by electrocoagulation: pitfalls of procedure. Exp Transl Stroke Med. 2010;2(1):4.

    PubMed Central  PubMed  Google Scholar 

  83. Antonelli A, Sfara C, Manuali E, Bruce IJ, Magnani M. Encapsulation of superparamagnetic nanoparticles into red blood cells as new carriers of MRI contrast agents. Nanomedicine (Lond). 2011;6(2):211–23.

    CAS  Google Scholar 

  84. Antonelli A, Sfara C, Mosca L, Manuali E, Magnani M. New biomimetic constructs for improved in vivo circulation of superparamagnetic nanoparticles. J Nanosci Nanotechnol. 2008;8(5):2270–8.

    PubMed  CAS  Google Scholar 

  85. Farr TD, Lai CH, Grunstein D, Orts-Gil G, Wang CC, Boehm-Sturm P, et al. Imaging early endothelial inflammation following stroke by core shell silica superparamagnetic glyconanoparticles that target selectin. Nano Lett. 2014;14(4):2130–4.

    PubMed  CAS  Google Scholar 

  86. Yilmaz G, Granger DN. Cell adhesion molecules and ischemic stroke. Neurol Res. 2008;30(8):783–93.

    PubMed Central  PubMed  Google Scholar 

  87. Dmitriev RI, Borisov SM, Kondrashina AV, Pakan JM, Anilkumar U, Prehn JH, et al. Imaging oxygen in neural cell and tissue models by means of anionic cell-permeable phosphorescent nanoparticles. Cell Mol Life Scie CMLS. 2014. doi:10.1007/s00018-014-1673-5.

  88. Erecinska M, Silver IA. Tissue oxygen tension and brain sensitivity to hypoxia. Respir Physiol. 2001;128(3):263–76.

    PubMed  CAS  Google Scholar 

  89. Obermeyer AC, Capehart SL, Jarman JB, Francis MB. Multivalent viral capsids with internal cargo for fibrin imaging. PLoS One. 2014;9(6):e100678.

    PubMed Central  PubMed  Google Scholar 

  90. McCarthy JR, Jaffer FA. The role of nanomedicine in the imaging and therapy of thrombosis. Nanomedicine. 2011;6(8):1291–3.

    PubMed Central  PubMed  CAS  Google Scholar 

  91. Ding DC, Shyu WC, Lin SZ, Li H. Current concepts in adult stem cell therapy for stroke. Curr Med Chem. 2006;13(29):3565–74.

    PubMed  CAS  Google Scholar 

  92. Darkazalli A, Levenson CW. Tracking stem cell migration and survival in brain injury: current approaches and future prospects. Histol Histopathol. 2012;27(10):1255–61.

    PubMed  CAS  Google Scholar 

  93. Lee JS, Feijen J. Polymersomes for drug delivery: design, formation and characterization. J Control Release Off J Control Release Soc. 2012;161(2):473–83.

    CAS  Google Scholar 

  94. Liu H, Cao J, Zhang H, Qin S, Yu M, Zhang X, et al. Folic acid stimulates proliferation of transplanted neural stem cells after focal cerebral ischemia in rats. J Nutr Biochem. 2013;24(11):1817–22.

    PubMed  CAS  Google Scholar 

  95. Yeung DK, Leung SW, Xu YC, Vanhoutte PM, Man RY. Puerarin, an isoflavonoid derived from Radix puerariae, potentiates endothelium-independent relaxation via the cyclic AMP pathway in porcine coronary artery. Eur J Pharmacol. 2006;552(1–3):105–11.

    PubMed  CAS  Google Scholar 

  96. Gao L, Ji X, Song J, Liu P, Yan F, Gong W, et al. Puerarin protects against ischemic brain injury in a rat model of transient focal ischemia. Neurol Res. 2009;31(4):402–6.

    PubMed  Google Scholar 

  97. Zhang W, Liu CQ, Wang PW, Sun SY, Su WJ, Zhang HJ, et al. Puerarin improves insulin resistance and modulates adipokine expression in rats fed a high-fat diet. Eur J Pharmacol. 2010;649(1–3):398–402.

    PubMed  CAS  Google Scholar 

  98. Wang CX, Huang LS, Hou LB, Jiang L, Yan ZT, Wang YL, et al. Antitumor effects of polysorbate-80 coated gemcitabine polybutylcyanoacrylate nanoparticles in vitro and its pharmacodynamics in vivo on C6 glioma cells of a brain tumor model. Brain Res. 2009;1261:91–9.

    PubMed  CAS  Google Scholar 

  99. Wilson B, Samanta MK, Santhi K, Kumar KP, Paramakrishnan N, Suresh B. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res. 2008;1200:159–68.

    PubMed  CAS  Google Scholar 

  100. Hatai T, Matsuzawa A, Inoshita S, Mochida Y, Kuroda T, Sakamaki K, et al. Execution of apoptosis signal-regulating kinase 1 (ASK1)-induced apoptosis by the mitochondria-dependent caspase activation. J Biol Chem. 2000;275(34):26576–81.

    PubMed  CAS  Google Scholar 

  101. Chang HY, Nishitoh H, Yang X, Ichijo H, Baltimore D. Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science. 1998;281(5384):1860–3.

    PubMed  CAS  Google Scholar 

  102. Singh S, Narang AS, Mahato RI. Subcellular fate and off-target effects of siRNA, shRNA, and miRNA. Pharm Res. 2011;28(12):2996–3015.

    PubMed  CAS  Google Scholar 

  103. Tang C, Xue H, Bai C, Fu R, Wu A. The effects of Tanshinone IIA on blood-brain barrier and brain edema after transient middle cerebral artery occlusion in rats. Phytomedicine Int J Phytother Phytopharmacology. 2010;17(14):1145–9.

    CAS  Google Scholar 

  104. Liu X, Ye M, An C, Pan L, Ji L. The effect of cationic albumin-conjugated PEGylated tanshinone IIA nanoparticles on neuronal signal pathways and neuroprotection in cerebral ischemia. Biomaterials. 2013;34(28):6893–905.

    PubMed  CAS  Google Scholar 

  105. Lu YM, Tao RR, Huang JY, Li LT, Liao MH, Li XM, et al. P2X7 signaling promotes microsphere embolism-triggered microglia activation by maintaining elevation of Fas ligand. J Neuroinflammation. 2012;9:172.

    PubMed Central  PubMed  Google Scholar 

  106. Nance E, Timbie K, Miller GW, Song J, Louttit C, Klibanov AL, et al. Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood-brain barrier using MRI-guided focused ultrasound. J Control Release Off J Control Release Soc. 2014;189:123–32.

  107. Thiyagarajan M, Sharma SS. Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci. 2004;74(8):969–85.

    PubMed  CAS  Google Scholar 

  108. Tyagi N, Qipshidze N, Munjal C, Vacek JC, Metreveli N, Givvimani S, et al. Tetrahydrocurcumin ameliorates homocysteinylated cytochrome-c mediated autophagy in hyperhomocysteinemia mice after cerebral ischemia. J Mol Neurosci MN. 2012;47(1):128–38.

    CAS  Google Scholar 

  109. Wang Q, Sun AY, Simonyi A, Jensen MD, Shelat PB, Rottinghaus GE, et al. Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. J Neurosci Res. 2005;82(1):138–48.

    PubMed  CAS  Google Scholar 

  110. Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther J Am Soc Gene Ther. 2011;19(10):1769–79.

    CAS  Google Scholar 

  111. Tiwari SK, Agarwal S, Seth B, Yadav A, Nair S, Bhatnagar P, et al. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/beta-catenin pathway. ACS Nano. 2014;8(1):76–103.

    PubMed  CAS  Google Scholar 

  112. Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther J Am Soc Gene Ther. 2010;18(9):1606–14.

    CAS  Google Scholar 

  113. Kalani A, Kamat PK, Kalani K, Tyagi N. Epigenetic impact of curcumin on stroke prevention. Metab Brain Dis. 2014. doi:10.1007/s11011-014-9537-0.

  114. Ahmad N, Umar S, Ashafaq M, Akhtar M, Iqbal Z, Samim M, et al. A comparative study of PNIPAM nanoparticles of curcumin, demethoxycurcumin, and bisdemethoxycurcumin and their effects on oxidative stress markers in experimental stroke. Protoplasma. 2013;250(6):1327–38.

    PubMed  CAS  Google Scholar 

  115. Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm. 2009;379(1):146–57.

    PubMed  CAS  Google Scholar 

  116. Singhal A, Morris VB, Labhasetwar V, Ghorpade A. Nanoparticle-mediated catalase delivery protects human neurons from oxidative stress. Cell Death Dis. 2013;4:e903.

    PubMed Central  PubMed  CAS  Google Scholar 

  117. Jaffer H, Morris VB, Stewart D, Labhasetwar V. Advances in stroke therapy. Drug Deliv Transl Res. 2011;1(6):409–19.

    PubMed Central  PubMed  CAS  Google Scholar 

  118. Dringen R, Pawlowski PG, Hirrlinger J. Peroxide detoxification by brain cells. J Neurosci Res. 2005;79(1–2):157–65.

    PubMed  CAS  Google Scholar 

  119. Aksenova MV, Aksenov MY, Mactutus CF, Booze RM. Cell culture models of oxidative stress and injury in the central nervous system. Curr Neurovasc Res. 2005;2(1):73–89.

    PubMed  CAS  Google Scholar 

  120. Halliwell B. Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic Res. 1999;31(4):261–72.

    PubMed  CAS  Google Scholar 

  121. Chrissobolis S, Faraci FM. The role of oxidative stress and NADPH oxidase in cerebrovascular disease. Trends Mol Med. 2008;14(11):495–502.

    PubMed Central  PubMed  CAS  Google Scholar 

  122. Brouns R, De Deyn PP. The complexity of neurobiological processes in acute ischemic stroke. Clin Neurol Neurosurg. 2009;111(6):483–95.

    PubMed  CAS  Google Scholar 

  123. Bors W, Heller W, Michel C, Saran M. Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol. 1990;186:343–55.

    PubMed  CAS  Google Scholar 

  124. Ghosh A, Sarkar S, Mandal AK, Das N. Neuroprotective role of nanoencapsulated quercetin in combating ischemia-reperfusion induced neuronal damage in young and aged rats. PLoS One. 2013;8(4):e57735.

    PubMed Central  PubMed  CAS  Google Scholar 

  125. Lee JC, Kim J, Park JK, Chung GH, Jang YS. The antioxidant, rather than prooxidant, activities of quercetin on normal cells: quercetin protects mouse thymocytes from glucose oxidase-mediated apoptosis. Exp Cell Res. 2003;291(2):386–97.

    PubMed  CAS  Google Scholar 

  126. Wang Y, Cooke MJ, Lapitsky Y, Wylie RG, Sachewsky N, Corbett D, et al. Transport of epidermal growth factor in the stroke-injured brain. J Control Release Off J Control Release Soc. 2011;149(3):225–35.

    CAS  Google Scholar 

  127. Wang Y, Cooke MJ, Morshead CM, Shoichet MS. Hydrogel delivery of erythropoietin to the brain for endogenous stem cell stimulation after stroke injury. Biomaterials. 2012;33(9):2681–92.

    PubMed  CAS  Google Scholar 

  128. Gupta D, Tator CH, Shoichet MS. Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials. 2006;27(11):2370–9.

    PubMed  CAS  Google Scholar 

  129. Felling RJ, Levison SW. Enhanced neurogenesis following stroke. J Neurosci Res. 2003;73(3):277–83.

    PubMed  CAS  Google Scholar 

  130. Pathan SA, Iqbal Z, Zaidi SM, Talegaonkar S, Vohra D, Jain GK, et al. CNS drug delivery systems: novel approaches. Recent Patents Drug Deliv Formulation. 2009;3(1):71–89.

    CAS  Google Scholar 

  131. Kolb B, Morshead C, Gonzalez C, Kim M, Gregg C, Shingo T, et al. Growth factor-stimulated generation of new cortical tissue and functional recovery after stroke damage to the motor cortex of rats. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2007;27(5):983–97.

    CAS  Google Scholar 

  132. Gupta AK, Naregalkar RR, Vaidya VD, Gupta M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine (Lond). 2007;2(1):23–39.

    CAS  Google Scholar 

  133. Gupta AK, Wells S. Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans Nanobiosci. 2004;3(1):66–73.

    Google Scholar 

  134. Gupta AK, Curtis AS. Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med. 2004;15(4):493–6.

    PubMed  CAS  Google Scholar 

  135. Pan CH, Liu WT, Bien MY, Lin IC, Hsiao TC, Ma CM, et al. Effects of size and surface of zinc oxide and aluminum-doped zinc oxide nanoparticles on cell viability inferred by proteomic analyses. Int J Nanomedicine. 2014;9:3631–43.

    PubMed Central  PubMed  CAS  Google Scholar 

  136. Zhang B, Choi JJ, Eum SY, Daunert S, Toborek M. TLR4 signaling is involved in brain vascular toxicity of PCB153 bound to nanoparticles. PLoS ONE. 2013;8(5).

  137. Xu L, Shi C, Shao A, Li X, Cheng X, Ding R, et al. Toxic responses in rat embryonic cells to silver nanoparticles and released silver ions as analyzed via gene expression profiles and transmission electron microscopy. Nanotoxicology. 2014;14:1–10.

    Google Scholar 

  138. Hassankhani R, Esmaeillou M, Tehrani AA, Nasirzadeh K, Khadir F, Maadi H. In vivo toxicity of orally administrated silicon dioxide nanoparticles in healthy adult mice. Environ Sci Pollut Res Int. 2014. doi:10.1007/s11356-014-3413-7.

  139. Harms C, Datwyler AL, Wiekhorst F, Trahms L, Lindquist R, Schellenberger E, et al. Certain types of iron oxide nanoparticles are not suited to passively target inflammatory cells that infiltrate the brain in response to stroke. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2013;33(5):e1–9.

    CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Tarek H. Mouhieddine, Muhieddine M. Itani, Amaly Nokkari, Changhong Ren, Georges Daoud, Asad Zeidan, Stefania Mondello, and Firas H. Kobeissy declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firas H. Kobeissy.

Additional information

Tarek H. Mouhieddine and Muhieddine M. Itani contributed equally to this work.

This article is part of the Topical Collection on Stroke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouhieddine, T.H., Itani, M.M., Nokkari, A. et al. Nanotheragnostic Applications for Ischemic and Hemorrhagic Strokes: Improved Delivery for a Better Prognosis. Curr Neurol Neurosci Rep 15, 505 (2015). https://doi.org/10.1007/s11910-014-0505-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-014-0505-1

Keywords

Navigation