Skip to main content
Log in

Blood Pressure Variability: Assessment, Predictive Value, and Potential as a Therapeutic Target

  • Blood Pressure Monitoring and Management (J Cockcroft, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

A large body of evidence has consistently supported the relationship between blood pressure (BP) levels and the risk of cardiovascular complications. In recent years, several independent studies have also indicated that this risk may not only depend on the magnitude of the blood pressure elevation per se but also on the presence of other associated conditions such as increased blood pressure variability. This concept has been supported by a series of reports, most of which post hoc analyses of clinical trials in hypertension, showing that increasing values of BP variability (BPV) (either in the short term, in the midterm, or in the long term) may predict development, progression, and severity of cardiac, vascular, and renal organ damage, as well as cardiovascular events and mortality. Remarkably, studies conducted in populations at high cardiovascular risk have shown increasing values of BPV in the individual subjects (so-called intra- or within-individual BPV) to be strong predictors of cardiovascular morbidity and mortality, even to a larger extent than average BP values. However, in subjects at low to moderate cardiovascular risk, the contribution of BPV to cardiovascular risk prediction over and beyond average BP values has been shown to be only moderate. The aim of this paper is to critically review the evidence addressing the prognostic relevance of different components of BPV addressing a yet open question, i.e., whether routine assessment of BPV in clinical practice should be regarded as an additional target of antihypertensive treatment to improve cardiovascular protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Parati G, Ochoa JE, Lombardi C, Bilo G. Assessment and management of blood-pressure variability. Nat Rev Cardiol. 2013;10:143–55. This review provides an in-depth description of the mechanisms of BPV, the methods currently used for BPV assessment, and the clinical relevance and prognostic importance of various types of BPV.

  2. Rothwell PM, Howard SC, Dolan E, O’Brien E, Dobson JE, Dahlof B, et al. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet. 2010;375(9718):895–905. This study provides evidence that in populations at high cardiovascular risk increasing values of intraindividual visit-to-visit BPV, may be prognostically more relevant than average blood pressure values.

    Article  PubMed  Google Scholar 

  3. Rothwell PM. Limitations of the usual blood-pressure hypothesis and importance of variability, instability, and episodic hypertension. Lancet. 2010;375(9718):938–48.

    Article  PubMed  Google Scholar 

  4. Parati G, Saul JP, Di Rienzo M, Mancia G. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension. 1995;25(6):1276–86.

    Article  CAS  PubMed  Google Scholar 

  5. Mancia G PG, di Rienzo M, Zanchetti A. Blood pressure variability. In: Mancia G ZA, editor. Handbook of hypertension: pathophysiology of hypertension. Amsterdam: Elsevier Science; 1997. p. 117–69.

  6. Mancia G, Di Rienzo M, Parati G. Ambulatory blood pressure monitoring use in hypertension research and clinical practice. Hypertension. 1993;21(4):510–24.

    Article  CAS  PubMed  Google Scholar 

  7. Parati G, Stergiou G, O’Brien E, Asmar R, Beilin L, Bilo G, et al. European Society of Hypertension practice guidelines for ambulatory blood pressure monitoring. J Hypertens. 2014;32(7):1359–66.

    Article  CAS  PubMed  Google Scholar 

  8. di Rienzo M, Grassi G, Pedotti A, Mancia G. Continuous vs intermittent blood pressure measurements in estimating 24-hour average blood pressure. Hypertension. 1983;5(2):264–9. This study provides evidence that estimation of short-term BPV within the 24 hours is possible by performing non-invasive, intermittent 24h ABPM.

    Article  PubMed  Google Scholar 

  9. Mena L, Pintos S, Queipo NV, Aizpurua JA, Maestre G, Sulbaran T. A reliable index for the prognostic significance of blood pressure variability. J Hypertens. 2005;23(3):505–11.

    Article  CAS  PubMed  Google Scholar 

  10. Mancia G, Bombelli M, Facchetti R, Madotto F, Corrao G, Trevano FQ, et al. Long-term prognostic value of blood pressure variability in the general population: results of the Pressioni Arteriose Monitorate e Loro Associazioni Study. Hypertension. 2007;49(6):1265–70.

    Article  CAS  PubMed  Google Scholar 

  11. Bilo G, Giglio A, Styczkiewicz K, Caldara G, Maronati A, Kawecka-Jaszcz K, et al. A new method for assessing 24-h blood pressure variability after excluding the contribution of nocturnal blood pressure fall. J Hypertens. 2007;25(10):2058–66.

    Article  CAS  PubMed  Google Scholar 

  12. Stolarz-Skrzypek K, Thijs L, Richart T, Li Y, Hansen TW, Boggia J, et al. Blood pressure variability in relation to outcome in the International Database of Ambulatory blood pressure in relation to Cardiovascular Outcome. Hypertens Res : Off J Jpn Soc Hypertens. 2010;33(8):757–66.

    Article  Google Scholar 

  13. Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN, et al. Recommendations for blood pressure measurement in humans and experimental animals: Part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension. 2005;45(1):142–61.

    Article  CAS  PubMed  Google Scholar 

  14. Mancia G, Parati G, Pomidossi G, Casadei R, Di Rienzo M, Zanchetti A. Arterial baroreflexes and blood pressure and heart rate variabilities in humans. Hypertension. 1986;8(2):147–53.

    Article  CAS  PubMed  Google Scholar 

  15. Conway J, Boon N, Davies C, Jones JV, Sleight P. Neural and humoral mechanisms involved in blood pressure variability. J Hypertens. 1984;2(2):203–8.

    Article  CAS  PubMed  Google Scholar 

  16. Parati G, Faini A, Valentini M. Blood pressure variability: its measurement and significance in hypertension. Curr Hypertens Rep. 2006;8(3):199–204.

    Article  PubMed  Google Scholar 

  17. Kotsis V, Stabouli S, Karafillis I, Papakatsika S, Rizos Z, Miyakis S, et al. Arterial stiffness and 24 h ambulatory blood pressure monitoring in young healthy volunteers: the early vascular ageing Aristotle University Thessaloniki Study (EVA-ARIS Study). Atherosclerosis. 2011;219(1):194–9.

    Article  CAS  PubMed  Google Scholar 

  18. Schillaci G, Bilo G, Pucci G, Laurent S, Macquin-Mavier I, Boutouyrie P, et al. Relationship between short-term blood pressure variability and large-artery stiffness in human hypertension: findings from 2 large databases. Hypertension. 2012;60(2):369–77.

    Article  CAS  PubMed  Google Scholar 

  19. Fukui M, Ushigome E, Tanaka M, Hamaguchi M, Tanaka T, Atsuta H, et al. Home blood pressure variability on one occasion is a novel factor associated with arterial stiffness in patients with type 2 diabetes. Hypertens Res 2013;36:219–25.

  20. Narkiewicz K, Winnicki M, Schroeder K, Phillips BG, Kato M, Cwalina E, et al. Relationship between muscle sympathetic nerve activity and diurnal blood pressure profile. Hypertension. 2002;39(1):168–72.

    Article  PubMed  Google Scholar 

  21. Somers VK, Dyken ME, Mark AL, Abboud FM. Sympathetic-nerve activity during sleep in normal subjects. N Engl J Med. 1993;328(5):303–7.

    Article  CAS  PubMed  Google Scholar 

  22. Kario K, Pickering TG, Hoshide S, Eguchi K, Ishikawa J, Morinari M, et al. Morning blood pressure surge and hypertensive cerebrovascular disease: role of the alpha adrenergic sympathetic nervous system. Am J Hypertens. 2004;17(8):668–75.

    Article  CAS  PubMed  Google Scholar 

  23. Grassi G, Seravalle G, Quarti-Trevano F, Dell’Oro R, Bombelli M, Cuspidi C, et al. Adrenergic, metabolic, and reflex abnormalities in reverse and extreme dipper hypertensives. Hypertension. 2008;52(5):925–31.

    Article  CAS  PubMed  Google Scholar 

  24. Fujii T, Uzu T, Nishimura M, Takeji M, Kuroda S, Nakamura S, et al. Circadian rhythm of natriuresis is disturbed in nondipper type of essential hypertension. Am J Kidney Dis. 1999;33(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  25. Verdecchia P, Schillaci G, Gatteschi C, Zampi I, Battistelli M, Bartoccini C, et al. Blunted nocturnal fall in blood pressure in hypertensive women with future cardiovascular morbid events. Circulation. 1993;88(3):986–92.

    Article  CAS  PubMed  Google Scholar 

  26. Haynes WG. Role of leptin in obesity-related hypertension. Exp Physiol. 2005;90(5):683–8.

    Article  CAS  PubMed  Google Scholar 

  27. Quinaglia T, Martins LC, Figueiredo VN, Santos RC, Yugar-Toledo JC, Martin JF, et al. Non-dipping pattern relates to endothelial dysfunction in patients with uncontrolled resistant hypertension. J Hum Hypertens. 2011;25(11):656–64.

    Article  CAS  PubMed  Google Scholar 

  28. Holt-Lunstad J, Steffen PR. Diurnal cortisol variation is associated with nocturnal blood pressure dipping. Psychosom Med. 2007;69(4):339–43.

    Article  PubMed  Google Scholar 

  29. Panarelli M, Terzolo M, Piovesan A, Osella G, Paccotti P, Pinna G, et al. 24-hour profiles of blood pressure and heart rate in Cushing’s syndrome. Evidence for differential control of cardiovascular variables by glucocorticoids. Annali italiani di medicina interna : organo ufficiale della Societa italiana di medicina interna. 1990;5(1):18–25.

    CAS  Google Scholar 

  30. Hohage H, Bruckner D, Arlt M, Buchholz B, Zidek W, Spieker C. Influence of cyclosporine A and FK506 on 24 h blood pressure monitoring in kidney transplant recipients. Clin Nephrol. 1996;45(5):342–4.

    PubMed  Google Scholar 

  31. Parati G, Pomidossi G, Albini F, Malaspina D, Mancia G. Relationship of 24-hour blood pressure mean and variability to severity of target-organ damage in hypertension. J Hypertens. 1987;5(1):93–8. This study showed that at nearly any level of 24h mean BP, the prevalence and severity of target organ damage was higher in subjects in whom the 24-h BP variability was higher, after adjusting for differences in mean BP levels.

    Article  CAS  PubMed  Google Scholar 

  32. Frattola A, Parati G, Cuspidi C, Albini F, Mancia G. Prognostic value of 24-hour blood pressure variability. J Hypertens. 1993;11(10):1133–7. This longitudinal study showed that BPV at the initial screen is a significant predictor of target organ damage, in particular of left ventricular hypertrophy.

    Article  CAS  PubMed  Google Scholar 

  33. Mancia G, Parati G, Hennig M, Flatau B, Omboni S, Glavina F, et al. Relation between blood pressure variability and carotid artery damage in hypertension: baseline data from the European Lacidipine Study on Atherosclerosis (ELSA). J Hypertens. 2001;19(11):1981–9.

    Article  CAS  PubMed  Google Scholar 

  34. Mancia G, Parati G. The role of blood pressure variability in end-organ damage. J Hypertens Suppl : Off J Int Soc Hypertens. 2003;21(6):S17–23.

    Article  CAS  Google Scholar 

  35. Sega R, Corrao G, Bombelli M, Beltrame L, Facchetti R, Grassi G, et al. Blood pressure variability and organ damage in a general population: results from the PAMELA study (Pressioni Arteriose Monitorate E Loro Associazioni). Hypertension. 2002;39(2 Pt 2):710–4.

    Article  CAS  PubMed  Google Scholar 

  36. Tatasciore A, Renda G, Zimarino M, Soccio M, Bilo G, Parati G, et al. Awake systolic blood pressure variability correlates with target-organ damage in hypertensive subjects. Hypertension. 2007;50(2):325–32.

    Article  CAS  PubMed  Google Scholar 

  37. Manios E, Tsagalis G, Tsivgoulis G, Barlas G, Koroboki E, Michas F, et al. Time rate of blood pressure variation is associated with impaired renal function in hypertensive patients. J Hypertens. 2009;27(11):2244–8.

    Article  CAS  PubMed  Google Scholar 

  38. Tatasciore A, Zimarino M, Tommasi R, Renda G, Schillaci G, Parati G, et al. Increased short-term blood pressure variability is associated with early left ventricular systolic dysfunction in newly diagnosed untreated hypertensive patients. J Hypertens. 2013;31(8):1653–61.

    Article  CAS  PubMed  Google Scholar 

  39. Sander D, Kukla C, Klingelhofer J, Winbeck K, Conrad B. Relationship between circadian blood pressure patterns and progression of early carotid atherosclerosis: a 3-year follow-up study. Circulation. 2000;102(13):1536–41.

    Article  CAS  PubMed  Google Scholar 

  40. Lurbe E, Redon J, Kesani A, Pascual JM, Tacons J, Alvarez V, et al. Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. N Engl J Med. 2002;347(11):797–805. This study showed that subjects with a non-dipping pattern of BP or with an increase in nocturnal BP have a higher rate of development and progression of microalbuminuria.

    Article  CAS  PubMed  Google Scholar 

  41. Kawai T, Ohishi M, Kamide K, Nakama C, Onishi M, Ito N, et al. Differences between daytime and nighttime blood pressure variability regarding systemic atherosclerotic change and renal function. Hypertens Res 2013;36:232–9.

  42. Davidson MB, Hix JK, Vidt DG, Brotman DJ. Association of impaired diurnal blood pressure variation with a subsequent decline in glomerular filtration rate. Arch Intern Med. 2006;166(8):846–52.

    Article  PubMed  Google Scholar 

  43. Knudsen ST, Laugesen E, Hansen KW, Bek T, Mogensen CE, Poulsen PL. Ambulatory pulse pressure, decreased nocturnal blood pressure reduction and progression of nephropathy in type 2 diabetic patients. Diabetologia. 2009;52(4):698–704.

    Article  CAS  PubMed  Google Scholar 

  44. Dawson SL, Manktelow BN, Robinson TG, Panerai RB, Potter JF. Which parameters of beat-to-beat blood pressure and variability best predict early outcome after acute ischemic stroke? Stroke J Cereb Circ. 2000;31(2):463–8.

    Article  CAS  Google Scholar 

  45. Pringle E, Phillips C, Thijs L, Davidson C, Staessen JA, de Leeuw PW, et al. Systolic blood pressure variability as a risk factor for stroke and cardiovascular mortality in the elderly hypertensive population. J Hypertens. 2003;21(12):2251–7.

    Article  CAS  PubMed  Google Scholar 

  46. Kario K, Pickering TG, Umeda Y, Hoshide S, Hoshide Y, Morinari M, et al. Morning surge in blood pressure as a predictor of silent and clinical cerebrovascular disease in elderly hypertensives: a prospective study. Circulation. 2003;107(10):1401–6.

    Article  PubMed  Google Scholar 

  47. Kario K, Ishikawa J, Pickering TG, Hoshide S, Eguchi K, Morinari M, et al. Morning hypertension: the strongest independent risk factor for stroke in elderly hypertensive patients. Hypertens Res : Off J Jpn Soc Hypertens. 2006;29(8):581–7.

    Article  Google Scholar 

  48. Verdecchia P, Angeli F, Gattobigio R, Rapicetta C, Reboldi G. Impact of blood pressure variability on cardiac and cerebrovascular complications in hypertension. Am J Hypertens. 2007;20(2):154–61.

    Article  PubMed  Google Scholar 

  49. Hansen TW, Thijs L, Li Y, Boggia J, Kikuya M, Bjorklund-Bodegard K, et al. Prognostic value of reading-to-reading blood pressure variability over 24 hours in 8938 subjects from 11 populations. Hypertension. 2010;55(4):1049–57. This metanalysis provided evidence that an initial increase in BPV within the 24h is predictive for cardiovascular events and cardiovascular mortality independently of mean BP levels.

    Article  CAS  PubMed  Google Scholar 

  50. Kikuya M, Hozawa A, Ohokubo T, Tsuji I, Michimata M, Matsubara M, et al. Prognostic significance of blood pressure and heart rate variabilities: the Ohasama study. Hypertension. 2000;36(5):901–6.

    Article  CAS  PubMed  Google Scholar 

  51. Stolarz-Skrzypek K, Thijs L, Li Y, Hansen TW, Boggia J, Kuznetsova T, et al. Short-term blood pressure variability in relation to outcome in the International Database of Ambulatory blood pressure in relation to Cardiovascular Outcome (IDACO). Acta Cardiol. 2011;66(6):701–6.

    PubMed  Google Scholar 

  52. Staessen JA, Thijs L, Fagard R, O’Brien ET, Clement D, de Leeuw PW, et al. Predicting cardiovascular risk using conventional vs ambulatory blood pressure in older patients with systolic hypertension. Systolic Hypertension in Europe Trial Investigators. JAMA. 1999;282(6):539–46.

    Article  CAS  PubMed  Google Scholar 

  53. Sega R, Facchetti R, Bombelli M, Cesana G, Corrao G, Grassi G, et al. Prognostic value of ambulatory and home blood pressures compared with office blood pressure in the general population: follow-up results from the Pressioni Arteriose Monitorate e Loro Associazioni (PAMELA) study. Circulation. 2005;111(14):1777–83.

    Article  PubMed  Google Scholar 

  54. Kikuya M, Ohkubo T, Asayama K, Metoki H, Obara T, Saito S, et al. Ambulatory blood pressure and 10-year risk of cardiovascular and noncardiovascular mortality: the Ohasama study. Hypertension. 2005;45(2):240–5.

    Article  CAS  PubMed  Google Scholar 

  55. Fagard RH, Celis H, Thijs L, Staessen JA, Clement DL, De Buyzere ML, et al. Daytime and nighttime blood pressure as predictors of death and cause-specific cardiovascular events in hypertension. Hypertension. 2008;51(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  56. Boggia J, Li Y, Thijs L, Hansen TW, Kikuya M, Bjorklund-Bodegard K, et al. Prognostic accuracy of day versus night ambulatory blood pressure: a cohort study. Lancet. 2007;370(9594):1219–29.

    Article  PubMed  Google Scholar 

  57. Hansen TW, Li Y, Boggia J, Thijs L, Richart T, Staessen JA. Predictive role of the nighttime blood pressure. Hypertension. 2011;57(1):3–10. This is one of the studies that have consistently shown the superior prognostic value of nocturnal BP values over other components of 24h ABPM.

    Article  CAS  PubMed  Google Scholar 

  58. Clement DL, De Buyzere ML, De Bacquer DA, de Leeuw PW, Duprez DA, Fagard RH, et al. Prognostic value of ambulatory blood-pressure recordings in patients with treated hypertension. N Engl J Med. 2003;348(24):2407–15.

    Article  PubMed  Google Scholar 

  59. Fagard RH, Van Den Broeke C, De Cort P. Prognostic significance of blood pressure measured in the office, at home and during ambulatory monitoring in older patients in general practice. J Hum Hypertens. 2005;19(10):801–7.

    Article  CAS  PubMed  Google Scholar 

  60. Redon J, Campos C, Narciso ML, Rodicio JL, Pascual JM, Ruilope LM. Prognostic value of ambulatory blood pressure monitoring in refractory hypertension: a prospective study. Hypertension. 1998;31(2):712–8.

    Article  CAS  PubMed  Google Scholar 

  61. Dolan E, Stanton A, Thijs L, Hinedi K, Atkins N, McClory S, et al. Superiority of ambulatory over clinic blood pressure measurement in predicting mortality: the Dublin outcome study. Hypertension. 2005;46(1):156–61.

    Article  CAS  PubMed  Google Scholar 

  62. Hansen TW, Jeppesen J, Rasmussen S, Ibsen H, Torp-Pedersen C. Ambulatory blood pressure and mortality: a population-based study. Hypertension. 2005;45(4):499–504.

    Article  CAS  PubMed  Google Scholar 

  63. Metoki H, Ohkubo T, Kikuya M, Asayama K, Obara T, Hashimoto J, et al. Prognostic significance for stroke of a morning pressor surge and a nocturnal blood pressure decline: the Ohasama study. Hypertension. 2006;47(2):149–54. This study provided evidence that subjects with a non-dipping or with “rising” pattern of BP at night are at an increased risk of CV events as compared to “dippers”.

    Article  CAS  PubMed  Google Scholar 

  64. Tsioufis C, Andrikou I, Thomopoulos C, Petras D, Manolis A, Stefanadis C. Comparative prognostic role of nighttime blood pressure and nondipping profile on renal outcomes. Am J Nephrol. 2011;33(3):277–88.

    Article  PubMed  Google Scholar 

  65. Amici A, Cicconetti P, Sagrafoli C, Baratta A, Passador P, Pecci T, et al. Exaggerated morning blood pressure surge and cardiovascular events. A 5-year longitudinal study in normotensive and well-controlled hypertensive elderly. Arch Gerontol Geriatr. 2009;49(2):e105–9.

    Article  CAS  PubMed  Google Scholar 

  66. Verdecchia P, Angeli F, Mazzotta G, Garofoli M, Ramundo E, Gentile G, et al. Day-night dip and early-morning surge in blood pressure in hypertension: prognostic implications. Hypertension. 2012;60(1):34–42. This study showed that a blunted nocturnal BP dipping but not an increased morning BP surge is associated with an increased risk of CV outcomes, the risk of CV events being higher in patients with a blunted pre-awakening BP surge (associated with reduced or absent night-time BP dipping).

    Article  CAS  PubMed  Google Scholar 

  67. Xie HH, Miao CY, Jiang YY, Su DF. Synergism of atenolol and nitrendipine on hemodynamic amelioration and organ protection in hypertensive rats. J Hypertens. 2005;23(1):193–201.

    Article  CAS  PubMed  Google Scholar 

  68. Xie HH, Shen FM, Xu LP, Han P, Miao CY, Su DF. Reduction of blood pressure variability by combination therapy in spontaneously hypertensive rats. J Hypertens. 2007;25(11):2334–44.

    Article  CAS  PubMed  Google Scholar 

  69. Liu JG, Xu LP, Chu ZX, Miao CY, Su DF. Contribution of blood pressure variability to the effect of nitrendipine on end-organ damage in spontaneously hypertensive rats. J Hypertens. 2003;21(10):1961–7.

    Article  CAS  PubMed  Google Scholar 

  70. Han P, Shen FM, Xie HH, Chen YY, Miao CY, Mehta JL, et al. The combination of atenolol and amlodipine is better than their monotherapy for preventing end-organ damage in different types of hypertension in rats. J Cell Mol Med. 2009;13(4):726–34.

    Article  CAS  PubMed  Google Scholar 

  71. Zanchetti A. Wars, war games, and dead bodies on the battlefield: variations on the theme of blood pressure variability. Stroke J Cereb Circ. 2011;42(10):2722–4.

    Article  Google Scholar 

  72. Ferrari A, Buccino N, Di Rienzo M, Pedotti A, Mancia G, Zanchetti A. Labetalol and 24-hour monitoring of arterial blood pressure in hypertensive patients. J Cardiovasc Pharmacol. 1981;3 Suppl 1:S42–52.

    Article  PubMed  Google Scholar 

  73. Mancia G, Ferrari A, Gregorini L, Parati G, Pomidossi G, Grassi G, et al. Evaluation of a slow-release clonidine preparation by direct continuous blood pressure recording in essential hypertensive patients. J Cardiovasc Pharmacol. 1981;3(6):1193–202.

    Article  CAS  PubMed  Google Scholar 

  74. Mancia G, Ferrari A, Pomidossi G, Parati G, Bertinieri G, Grassi G, et al. Twenty-four-hour blood pressure profile and blood pressure variability in untreated hypertension and during antihypertensive treatment by once-a-day nadolol. Am Heart J. 1984;108(4 Pt 2):1078–83.

    Article  CAS  PubMed  Google Scholar 

  75. Pomidossi G, Parati G, Motolese M, Mancia G, Zanchetti A. Hemodynamic effects of once a day administration of combined chlorthalidone and metoprolol slow-release in essential hypertension. Int J Clin Pharmacol Ther Toxicol. 1984;22(12):665–71.

    CAS  PubMed  Google Scholar 

  76. Pomidossi G, Parati G, Malaspina D, Camesasca C, Motolese M, Zanchetti A, et al. Antihypertensive effect of a new formulation of slow release oxprenolol in essential hypertension. J Cardiovasc Pharmacol. 1987;10(5):593–8.

    Article  CAS  PubMed  Google Scholar 

  77. Parati G, Pomidossi G, Casadei R, Ravogli A, Trazzi S, Mutti E, et al. 24-h ambulatory non-invasive blood pressure monitoring in the assessment of the antihypertensive action of celiprolol. J Int Med Res. 1988;16 Suppl 1:52A–61A.

    PubMed  Google Scholar 

  78. Mancia G, De Cesaris R, Fogari R, Lattuada S, Montemurro G, Palombo C, et al. Evaluation of the antihypertensive effect of once-a-day trandolapril by 24-hour ambulatory blood pressure monitoring. The Italian Trandolapril Study Group. Am J Cardiol. 1992;70(12):60D–6D.

    Article  CAS  PubMed  Google Scholar 

  79. Mancia G, Omboni S, Ravogli A, Parati G, Zanchetti A. Ambulatory blood pressure monitoring in the evaluation of antihypertensive treatment: additional information from a large data base. Blood Press. 1995;4(3):148–56.

    Article  CAS  PubMed  Google Scholar 

  80. Parati G, Mutti E, Frattola A, Castiglioni P, di Rienzo M, Mancia G. Beta-adrenergic blocking treatment and 24-hour baroreflex sensitivity in essential hypertensive patients. Hypertension. 1994;23(6 Pt 2):992–6.

    Article  CAS  PubMed  Google Scholar 

  81. Frattola A, Parati G, Castiglioni P, Paleari F, Ulian L, Rovaris G, et al. Lacidipine and blood pressure variability in diabetic hypertensive patients. Hypertension. 2000;36(4):622–8.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang Y, Agnoletti D, Safar ME, Blacher J. Effect of antihypertensive agents on blood pressure variability: the Natrilix SR versus candesartan and amlodipine in the reduction of systolic blood pressure in hypertensive patients (X-CELLENT) study. Hypertension. 2011;58(2):155–60.

    Article  CAS  PubMed  Google Scholar 

  83. Levi-Marpillat N, Macquin-Mavier I, Tropeano AI, Parati G, Maison P. Antihypertensive drug classes have different effects on short-term blood pressure variability in essential hypertension. Hypertens Res : Off J Jpn Soc Hypertens. 2014;37(6):585–90. This study showed that subjects receiving either CCBs or diuretics, alone or in addition to other drugs, had significantly lower SD of 24-h SBP compared with those receiving angiotensin-converting enzyme inhibitors, angiotensin receptor blockers or beta-blockers alone or in combination.

    Article  CAS  Google Scholar 

  84. Lemmer B, Nold G, Behne S, Kaiser R. Chronopharmacokinetics and cardiovascular effects of nifedipine. Chronobiol Int. 1991;8(6):485–94.

    Article  CAS  PubMed  Google Scholar 

  85. Palatini P, Racioppa A, Raule G, Zaninotto M, Penzo M, Pessina AC. Effect of timing of administration on the plasma ACE inhibitory activity and the antihypertensive effect of quinapril. Clin Pharmacol Ther. 1992;52(4):378–83.

    Article  CAS  PubMed  Google Scholar 

  86. White WB, Anders RJ, MacIntyre JM, Black HR, Sica DA. Nocturnal dosing of a novel delivery system of verapamil for systemic hypertension. Verapamil study group. Am J Cardiol. 1995;76(5):375–80.

    Article  CAS  PubMed  Google Scholar 

  87. Panza JA, Epstein SE, Quyyumi AA. Circadian variation in vascular tone and its relation to alpha-sympathetic vasoconstrictor activity. N Engl J Med. 1991;325(14):986–90.

    Article  CAS  PubMed  Google Scholar 

  88. Hermida RC, Calvo C, Ayala DE, Dominguez MJ, Covelo M, Fernandez JR, et al. Administration time-dependent effects of valsartan on ambulatory blood pressure in hypertensive subjects. Hypertension. 2003;42(3):283–90.

    Article  CAS  PubMed  Google Scholar 

  89. Lipicky RJ. Trough: peak ratio: the rationale behind the United States Food and Drug Administration recommendations. J Hypertens Suppl : Off J Int Soc Hypertens. 1994;12(8):S17–8. discussion S8-9.

    CAS  Google Scholar 

  90. Omboni S, Parati G, Zanchetti A, Mancia G. Calculation of trough:peak ratio of antihypertensive treatment from ambulatory blood pressure: methodological aspects. J Hypertens. 1995;13(10):1105–12.

    Article  CAS  PubMed  Google Scholar 

  91. Zannad F, Radauceanu A, Parati G. Trough-to-peak ratio, smoothness index and morning-to-evening ratio: why, which and when? J Hypertens. 2003;21(5):851–4.

    Article  CAS  PubMed  Google Scholar 

  92. Meredith PA, Elliott HL. FDA guidelines on trough: peak ratios in the evaluation of antihypertensive agents. United States Food and Drug Administration. J Cardiovasc Pharmacol. 1994;23 Suppl 5:S26–30.

    Article  CAS  PubMed  Google Scholar 

  93. Parati G, Omboni S, Rizzoni D, Agabiti-Rosei E, Mancia G. The smoothness index: a new, reproducible and clinically relevant measure of the homogeneity of the blood pressure reduction with treatment for hypertension. J Hypertens. 1998;16(11):1685–91.

    Article  CAS  PubMed  Google Scholar 

  94. Rizzoni D, Muiesan ML, Salvetti M, Castellano M, Bettoni G, Monteduro C, et al. The smoothness index, but not the trough-to-peak ratio predicts changes in carotid artery wall thickness during antihypertensive treatment. J Hypertens. 2001;19(4):703–11.

    Article  CAS  PubMed  Google Scholar 

  95. Parati G, Schumacher H, Bilo G, Mancia G. Evaluating 24-h antihypertensive efficacy by the smoothness index: a meta-analysis of an ambulatory blood pressure monitoring database. J Hypertens. 2010;28(11):2177–83.

    Article  CAS  PubMed  Google Scholar 

  96. Mancia G, Ferrari A, Gregorini L, Parati G, Pomidossi G, Bertinieri G, et al. Blood pressure and heart rate variabilities in normotensive and hypertensive human beings. Circ Res. 1983;53(1):96–104.

    Article  CAS  PubMed  Google Scholar 

  97. Parati G, Dolan E, Ley L, Schumacher H. Impact of antihypertensive combination and monotreatments on blood pressure variability: assessment by old and new indices. Data from a large ambulatory blood pressure monitoring database. J Hypertens. 2014;32(6):1326–33. This study showed that combination treatment is associated with a smoother BP reduction over 24 h and with a more favorable balance between mean 24-h BP reduction and the degree of BP variability on treatment, also showing a similar agreement between smoothness index and TOVI for assessment of antihypertensive treatments.

    Article  CAS  PubMed  Google Scholar 

  98. Parati G, Schumacher H. Blood pressure variability over 24 h: prognostic implications and treatment perspectives. An assessment using the smoothness index with telmisartan-amlodipine monotherapy and combination. Hypertens Res : Off J Jpn Soc Hypertens. 2014;37(3):187–93.

    Article  CAS  Google Scholar 

  99. Murakami S, Otsuka K, Kubo Y, Shinagawa M, Matsuoka O, Yamanaka T, et al. Weekly variation of home and ambulatory blood pressure and relation between arterial stiffness and blood pressure measurements in community-dwelling hypertensives. Clin Exp Hypertens. 2005;27:231–9.

    PubMed  Google Scholar 

  100. Schutte R, Thijs L, Liu YP, Asayama K, Jin Y, Odili A, et al. Within-subject blood pressure level—not variability—predicts fatal and nonfatal outcomes in a general population. Hypertension. 2012;60(5):1138–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Ishikura K, Obara T, Kato T, Kikuya M, Shibamiya T, Shinki T, et al. Associations between day-by-day variability in blood pressure measured at home and antihypertensive drugs: the J-HOME-Morning study. Clin Exp Hypertens. 2012;34(4):297–304.

    Article  CAS  PubMed  Google Scholar 

  102. Johansson JK, Niiranen TJ, Puukka PJ, Jula AM. Factors affecting the variability of home-measured blood pressure and heart rate: the Finn-home study. J Hypertens. 2010;28(9):1836–45.

    Article  CAS  PubMed  Google Scholar 

  103. Kato T, Kikuya M, Ohkubo T, Satoh M, Hara A, Obara T, et al. Factors associated with day-by-day variability of self-measured blood pressure at home: the Ohasama study. Am J Hypertens. 2010;23(9):980–6.

    Article  PubMed  Google Scholar 

  104. Imai Y, Nishiyama A, Sekino M, Aihara A, Kikuya M, Ohkubo T, et al. Characteristics of blood pressure measured at home in the morning and in the evening: the Ohasama study. J Hypertens. 1999;17(7):889–98.

    Article  CAS  PubMed  Google Scholar 

  105. Okada H, Fukui M, Tanaka M, Inada S, Mineoka Y, Nakanishi N, et al. Visit-to-visit variability in systolic blood pressure is correlated with diabetic nephropathy and atherosclerosis in patients with type 2 diabetes. Atherosclerosis. 2012;220(1):155–9.

    Article  CAS  PubMed  Google Scholar 

  106. Nagai M, Hoshide S, Ishikawa J, Shimada K, Kario K. Visit-to-visit blood pressure variations: new independent determinants for carotid artery measures in the elderly at high risk of cardiovascular disease. J Am Soc Hypertens : JASH. 2011;5(3):184–92.

    Article  PubMed  Google Scholar 

  107. Asayama K, Kikuya M, Schutte R, Thijs L, Hosaka M, Satoh M, et al. Home blood pressure variability as cardiovascular risk factor in the population of Ohasama. Hypertension. 2013;61(1):61–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Okada T, Nakao T, Matsumoto H, Nagaoka Y, Tomaru R, Iwasawa H, et al. [Day-by-day variability of home blood pressure in patients with chronic kidney disease]. Nihon Jinzo Gakkai shi. 2008;50(5):588–96.

    PubMed  Google Scholar 

  109. Kawabe H, Kanda T, Hirose H, Saito I. Variability of home blood pressure measurements between first and second measurements on one occasion, and factors related to variability. Clin Exp Hypertens. 2012;34(4):237–42.

    Article  PubMed  Google Scholar 

  110. Johansson JK, Kronholm E, Jula AM. Variability in home-measured blood pressure and heart rate: associations with self-reported insomnia and sleep duration. J Hypertens. 2011;29(10):1897–905.

    Article  CAS  PubMed  Google Scholar 

  111. Cacciolati C, Tzourio C, Hanon O. Blood pressure variability in elderly persons with white-coat and masked hypertension compared to those with normotension and sustained hypertension. Am J Hypertens. 2013;26(3):367–72.

    Article  PubMed  Google Scholar 

  112. Matsui Y, Ishikawa J, Eguchi K, Shibasaki S, Shimada K, Kario K. Maximum value of home blood pressure: a novel indicator of target organ damage in hypertension. Hypertension. 2011;57(6):1087–93. This study provided evidence that an increased day-by-day BPV independently of average home BP levels, is a predictor of development, establishment and evolution of cardiac, vascular and renal organ damage.

    Article  CAS  PubMed  Google Scholar 

  113. Ushigome E, Fukui M, Hamaguchi M, Senmaru T, Sakabe K, Tanaka M, et al. The coefficient variation of home blood pressure is a novel factor associated with macroalbuminuria in type 2 diabetes mellitus. Hypertens Res : Off J Jpn Soc Hypertens. 2011;34(12):1271–5.

    Article  CAS  Google Scholar 

  114. Hoshide S, Yano Y, Shimizu M, Eguchi K, Ishikawa J, Kario K. Is home blood pressure variability itself an interventional target beyond lowering mean home blood pressure during anti-hypertensive treatment? Hypertens Res : Off J Jpn Soc Hypertens. 2012;35(8):862–6.

    Article  CAS  Google Scholar 

  115. Nishimura M, Kato Y, Tanaka T, Todo R, Tone A, Yamada K, et al. Significance of estimating the glomerular filtration rate for the management of hypertension in type 2 diabetes with microalbuminuria. Hypertens Res : Off J Jpn Soc Hypertens. 2013;36(8):705–10.

    Article  Google Scholar 

  116. Okada T, Matsumoto H, Nagaoka Y, Nakao T. Association of home blood pressure variability with progression of chronic kidney disease. Blood Press Monit. 2012;17(1):1–7.

    Article  PubMed  Google Scholar 

  117. Kikuya M, Ohkubo T, Metoki H, Asayama K, Hara A, Obara T, et al. Day-by-day variability of blood pressure and heart rate at home as a novel predictor of prognosis: the Ohasama study. Hypertension. 2008;52(6):1045–50. This study provided evidence that increasing values of variability in systolic HBP are associated with a higher risk of the composite end-point of cardiac and stroke mortality.

    Article  CAS  PubMed  Google Scholar 

  118. Hashimoto T, Kikuya M, Ohkubo T, Satoh M, Metoki H, Inoue R, et al. Home blood pressure level, blood pressure variability, smoking, and stroke risk in Japanese men: the Ohasama study. Am J Hypertens. 2012;25(8):883–91.

    Article  PubMed  Google Scholar 

  119. Johansson JK, Niiranen TJ, Puukka PJ, Jula AM. Prognostic value of the variability in home-measured blood pressure and heart rate: the Finn-Home Study. Hypertension. 2012;59(2):212–8. This study indicated that increasing variability in systolic and diastolic HBP is associated with a higher risk of cardiovascular events after 7.8 years of follow-up, which remained significant even after adjusting for age and average HBP levels, thus supporting the additive value of HBP variability in predicting CV prognosis.

    Article  CAS  PubMed  Google Scholar 

  120. Matsui Y, O’Rourke MF, Hoshide S, Ishikawa J, Shimada K, Kario K. Combined effect of angiotensin II receptor blocker and either a calcium channel blocker or diuretic on day-by-day variability of home blood pressure: the Japan Combined Treatment With Olmesartan and a Calcium-Channel Blocker Versus Olmesartan and Diuretics Randomized Efficacy Study. Hypertension. 2012;59(6):1132–8.

    Article  CAS  PubMed  Google Scholar 

  121. Ushigome E, Fukui M, Hamaguchi M, Tanaka T, Atsuta H, Ohnishi M, et al. Beneficial effect of calcium channel blockers on home blood pressure variability in the morning in patients with type 2 diabetes. J Diab Investig. 2013;4(4):399–404.

    Article  CAS  Google Scholar 

  122. Muntner P, Joyce C, Levitan EB, Holt E, Shimbo D, Webber LS, et al. Reproducibility of visit-to-visit variability of blood pressure measured as part of routine clinical care. J Hypertens. 2011;29(12):2332–8.

    Article  CAS  PubMed  Google Scholar 

  123. Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, et al. 2007 guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2007;25(6):1105–87.

    Article  CAS  PubMed  Google Scholar 

  124. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo Jr JL, et al. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension. 2003;42(6):1206–52.

    Article  CAS  PubMed  Google Scholar 

  125. Benvenuto LJ, Krakoff LR. Morbidity and mortality of orthostatic hypotension: implications for management of cardiovascular disease. Am J Hypertens. 2011;24(2):135–44.

    Article  PubMed  Google Scholar 

  126. Whitworth JA, World Health Organization, ISoHWG. 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. J Hypertens. 2003;21(11):1983–92.

    Article  PubMed  Google Scholar 

  127. Imai Y, Otsuka K, Kawano Y, Shimada K, Hayashi H, Tochikubo O, et al. Japanese Society of Hypertension (JSH) guidelines for self-monitoring of blood pressure at home. Hypertens Res : Off J Jpn Soc Hypertens. 2003;26(10):771–82.

    Article  Google Scholar 

  128. Parati G, Bilo G. Calcium antagonist added to angiotensin receptor blocker: a recipe for reducing blood pressure variability?: evidence from day-by-day home blood pressure monitoring. Hypertension. 2012;59(6):1091–3.

    Article  CAS  PubMed  Google Scholar 

  129. Muntner P, Levitan EB, Joyce C, Holt E, Mann D, Oparil S, et al. Association between antihypertensive medication adherence and visit-to-visit variability of blood pressure. J Clin Hypertens (Greenwich). 2013;15(2):112–7.

    Article  Google Scholar 

  130. Nagai M, Hoshide S, Nishikawa M, Shimada K, Kario K. Sleep duration and insomnia in the elderly: associations with blood pressure variability and carotid artery remodeling. Am J Hypertens. 2013;26(8):981–9.

    Article  PubMed  Google Scholar 

  131. Muntner P, Shimbo D, Tonelli M, Reynolds K, Arnett DK, Oparil S. The relationship between visit-to-visit variability in systolic blood pressure and all-cause mortality in the general population: findings from NHANES III, 1988 to 1994. Hypertension. 2011;57(2):160–6.

    Article  CAS  PubMed  Google Scholar 

  132. Sega R, Cesana G, Bombelli M, Grassi G, Stella ML, Zanchetti A, et al. Seasonal variations in home and ambulatory blood pressure in the PAMELA population. Pressione Arteriose Monitorate E Loro Associazioni. J Hypertens. 1998;16(11):1585–92.

    Article  CAS  PubMed  Google Scholar 

  133. Modesti PA, Morabito M, Bertolozzi I, Massetti L, Panci G, Lumachi C, et al. Weather-related changes in 24-hour blood pressure profile: effects of age and implications for hypertension management. Hypertension. 2006;47(2):155–61.

    Article  CAS  PubMed  Google Scholar 

  134. Masugata H, Senda S, Murao K, Inukai M, Hosomi N, Iwado Y, et al. Visit-to-visit variability in blood pressure over a 1-year period is a marker of left ventricular diastolic dysfunction in treated hypertensive patients. Hypertens Res : Off J Jpn Soc Hypertens. 2011;34(7):846–50.

    Article  Google Scholar 

  135. Shimbo D, Shea S, McClelland RL, Viera AJ, Mann D, Newman J, et al. Associations of aortic distensibility and arterial elasticity with long-term visit-to-visit blood pressure variability: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Hypertens. 2013;26(7):896–902.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Kilpatrick ES, Rigby AS, Atkin SL. The role of blood pressure variability in the development of nephropathy in type 1 diabetes. Diabetes Care. 2010;33(11):2442–7. This study indicated that increasing values of visit-to-visit BPV are associated with development of micro and macro albuminuria.

    Article  PubMed Central  PubMed  Google Scholar 

  137. Kawai T, Ohishi M, Kamide K, Onishi M, Takeya Y, Tatara Y, et al. The impact of visit-to-visit variability in blood pressure on renal function. Hypertens Res : Off J Jpn Soc Hypertens. 2012;35(2):239–43.

    Article  Google Scholar 

  138. Yokota K, Fukuda M, Matsui Y, Hoshide S, Shimada K, Kario K. Impact of visit-to-visit variability of blood pressure on deterioration of renal function in patients with non-diabetic chronic kidney disease. Hypertens Res 2013;36:151–7.

  139. Brickman AM, Reitz C, Luchsinger JA, Manly JJ, Schupf N, Muraskin J, et al. Long-term blood pressure fluctuation and cerebrovascular disease in an elderly cohort. Arch Neurol. 2010;67(5):564–9.

    PubMed Central  PubMed  Google Scholar 

  140. Havlik RJ, Foley DJ, Sayer B, Masaki K, White L, Launer LJ. Variability in midlife systolic blood pressure is related to late-life brain white matter lesions: the Honolulu-Asia Aging study. Stroke J Cereb Circ. 2002;33(1):26–30.

    Article  Google Scholar 

  141. Liu W, Liu R, Sun W, Peng Q, Zhang W, Xu E, et al. Different impacts of blood pressure variability on the progression of cerebral microbleeds and white matter lesions. Stroke J Cereb Circ. 2012;43(11):2916–22.

    Article  Google Scholar 

  142. Diaz KM, Veerabhadrappa P, Kashem MA, Feairheller DL, Sturgeon KM, Williamson ST, et al. Relationship of visit-to-visit and ambulatory blood pressure variability to vascular function in African Americans. Hypertens Res : Off J Jpn Soc Hypertens. 2012;35(1):55–61.

    Article  CAS  Google Scholar 

  143. Nagai M, Hoshide S, Ishikawa J, Shimada K, Kario K. Visit-to-visit blood pressure variations: new independent determinants for cognitive function in the elderly at high risk of cardiovascular disease. J Hypertens. 2012;30(8):1556–63.

    Article  CAS  PubMed  Google Scholar 

  144. Okada H, Fukui M, Tanaka M, Matsumoto S, Mineoka Y, Nakanishi N, et al. Visit-to-visit blood pressure variability is a novel risk factor for the development and progression of diabetic nephropathy in patients with type 2 diabetes. Diabetes Care. 2013;36(7):1908–12. This study consistently showed that visit-to-visit BPV in SBP is associated with an increased risk of progression of diabetic nephropathy or development of albuminuria in patients with type 2 diabetes, over and above the contribution provided by increased average BP levels.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  145. Noshad S, Mousavizadeh M, Mozafari M, Nakhjavani M, Esteghamati A. Visit-to-visit blood pressure variability is related to albuminuria variability and progression in patients with type 2 diabetes. J Hum Hypertens. 2013;28:37–43.

  146. Ruggenenti P, Porrini E, Motterlini N, Perna A, Ilieva AP, Iliev IP, et al. Measurable urinary albumin predicts cardiovascular risk among normoalbuminuric patients with type 2 diabetes. J Am Soc Nephrol : JASN. 2012;23(10):1717–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Hallan SI, Ritz E, Lydersen S, Romundstad S, Kvenild K, Orth SR. Combining GFR and albuminuria to classify CKD improves prediction of ESRD. J Am Soc Nephrol : JASN. 2009;20(5):1069–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  148. Parati G, Liu X, Ochoa JE. Clinical relevance of visit-to-visit blood pressure variability: impact on renal outcomes. J Hum Hypertens. 2014;28(7):403–9.

    Article  CAS  PubMed  Google Scholar 

  149. Vermeer SE, Hollander M, van Dijk EJ, Hofman A, Koudstaal PJ, Breteler MM. Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study. Stroke J Cereb Circ. 2003;34(5):1126–9.

    Article  Google Scholar 

  150. Mancia G, Messerli F, Bakris G, Zhou Q, Champion A, Pepine CJ. Blood pressure control and improved cardiovascular outcomes in the International Verapamil SR-Trandolapril Study. Hypertension. 2007;50(2):299–305. This study, conducted in a population of treated hypertensives at high cardiovascular risk showed a steep reduction in the incidence of fatal and non fatal CV events, but in particular of stroke, as the percentage of on-treatment visits with BP controlled increased throughout the treatment period independently of the mean office BP control achieved.

    Article  CAS  PubMed  Google Scholar 

  151. Hata Y, Kimura Y, Muratani H, Fukiyama K, Kawano Y, Ashida T, et al. Office blood pressure variability as a predictor of brain infarction in elderly hypertensive patients. Hypertens Res : Off J Jpn Soc Hypertens. 2000;23(6):553–60.

    Article  CAS  Google Scholar 

  152. Rothwell PM, Howard SC, Dolan E, O’Brien E, Dobson JE, Dahlof B, et al. Effects of beta blockers and calcium-channel blockers on within-individual variability in blood pressure and risk of stroke. Lancet Neurol. 2010;9(5):469–80. This metanalysis provided evidence that increasing values of intra-individual visit-to-visit variability in on-treatment office or ambulatory BP values is predictive of cerebrovascular and coronary fatal and non-fatal events independently of mean office or ambulatory BP values.

    Article  CAS  PubMed  Google Scholar 

  153. Eguchi K, Hoshide S, Schwartz JE, Shimada K, Kario K. Visit-to-visit and ambulatory blood pressure variability as predictors of incident cardiovascular events in patients with hypertension. Am J Hypertens. 2012;25(9):962–8.

    Article  PubMed  Google Scholar 

  154. Hata Y, Muratani H, Kimura Y, Fukiyama K, Kawano Y, Ashida T, et al. Office blood pressure variability as a predictor of acute myocardial infarction in elderly patients receiving antihypertensive therapy. J Hum Hypertens. 2002;16(2):141–6.

    Article  CAS  PubMed  Google Scholar 

  155. Hsieh YT, Tu ST, Cho TJ, Chang SJ, Chen JF, Hsieh MC. Visit-to-visit variability in blood pressure strongly predicts all-cause mortality in patients with type 2 diabetes: a 5.5-year prospective analysis. Eur J Clin Invest. 2012;42(3):245–53.

    Article  PubMed  Google Scholar 

  156. Shimbo D, Newman JD, Aragaki AK, LaMonte MJ, Bavry AA, Allison M, et al. Association between annual visit-to-visit blood pressure variability and stroke in postmenopausal women: data from the Women’s Health Initiative. Hypertension. 2012;60(3):625–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  157. Di Iorio B, Pota A, Sirico ML, Torraca S, Di Micco L, Rubino R, et al. Blood pressure variability and outcomes in chronic kidney disease. Nephrol Dial Transplant. 2012;27(12):4404–10.

    Article  PubMed  Google Scholar 

  158. Rossignol P, Cridlig J, Lehert P, Kessler M, Zannad F. Visit-to-visit blood pressure variability is a strong predictor of cardiovascular events in hemodialysis: insights from FOSIDIAL. Hypertension. 2012;60(2):339–46.

    Article  CAS  PubMed  Google Scholar 

  159. Mancia G, Facchetti R, Parati G, Zanchetti A. Visit-to-visit blood pressure variability in the European Lacidipine Study on Atherosclerosis: methodological aspects and effects of antihypertensive treatment. J Hypertens. 2012;30(6):1241–51.

    Article  CAS  PubMed  Google Scholar 

  160. Collins R, Peto R, MacMahon S, Hebert P, Fiebach NH, Eberlein KA, et al. Blood pressure, stroke, and coronary heart disease. Part 2, Short-term reductions in blood pressure: overview of randomised drug trials in their epidemiological context. Lancet. 1990;335(8693):827–38.

    Article  CAS  PubMed  Google Scholar 

  161. Turnbull F. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet. 2003;362(9395):1527–35. This Meta analysis supported the prevailing role of mean BP reduction in achieving cardiovascular protection.

    Article  CAS  PubMed  Google Scholar 

  162. Wang JG, Yan P, Jeffers BW. Effects of amlodipine and other classes of antihypertensive drugs on long-term blood pressure variability: evidence from randomized controlled trials. J Am Soc Hypertens : JASH. 2014;8(5):340–9.

    Article  PubMed  CAS  Google Scholar 

  163. Mancia G, Facchetti R, Parati G, Zanchetti A. Visit-to-visit blood pressure variability, carotid atherosclerosis, and cardiovascular events in the European Lacidipine Study on Atherosclerosis. Circulation. 2012;126(5):569–78.

    Article  PubMed  Google Scholar 

  164. Parati G, Liu X, Ochoa JE, Bilo G. Prognostic relevance of blood pressure variability: role of long-term and very long-term blood pressure changes. Hypertension. 2013;62(4):682–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Gianfranco Parati, Juan Eugenio Ochoa, Carolina Lombardi, and Grzegorz Bilo declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Parati.

Additional information

This article is part of the Topical Collection on Blood Pressure Monitoring and Management

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parati, G., Ochoa, J.E., Lombardi, C. et al. Blood Pressure Variability: Assessment, Predictive Value, and Potential as a Therapeutic Target. Curr Hypertens Rep 17, 23 (2015). https://doi.org/10.1007/s11906-015-0537-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-015-0537-1

Keywords

Navigation