Skip to main content

Advertisement

Log in

HIV and Bone Complications: Understudied Populations and New Management Strategies

  • Complications of HIV and Antiretroviral Therapy (G McComsey, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

The higher risk of osteoporosis and fracture associated with HIV infection and certain antiretrovirals has been well established and the need for risk stratification among older adults increasingly recognized. This review focuses upon emerging data on bone complications with HIV/HCV coinfection, in children and adolescents, and with pre-exposure prophylaxis (PrEP), as well as new management strategies to minimize the negative effects of ART on bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Brown TT, Mallon PW. Editorial: working towards an understanding of bone disease in HIV. Curr Opin HIV AIDS. 2016;11:251–2.

    Article  PubMed  Google Scholar 

  2. Hoy J, Young B. Do people with HIV infection have a higher risk of fracture compared with those without HIV infection? Curr Opin HIV AIDS. 2016;11:301–5.

    Article  PubMed  Google Scholar 

  3. Brown TT, Hoy J, Borderi M, Guaraldi G, Renjifo B, Vescini F, et al. Recommendations for evaluation and management of bone disease in HIV. Clin Infect Dis. 2015;60:1242–51.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hileman CO, Eckard AR, McComsey GA. Bone loss in HIV: a contemporary review. Curr Opin Endocrinol Diabetes Obes. 2015;22:446–51.

    Article  CAS  PubMed  Google Scholar 

  5. Rockstroh JK, Mocroft A, Soriano V, Tural C, Losso MH, Horban A, et al. Influence of hepatitis C virus infection on HIV-1 disease progression and response to highly active antiretroviral therapy. J Infect Dis. 2005;192:992–1002.

    Article  PubMed  Google Scholar 

  6. Balla HH, Abdullah S, Mohdfaizal W, Zulkifli R, Sopian K. Numerical study of the enhancement of heat transfer for hybrid CuO-Cu nanofluids flowing in a circular pipe. J Oleo Sci. 2013;62:533–9.

    Article  CAS  PubMed  Google Scholar 

  7. Staples Jr CT, Rimland D, Dudas D. Hepatitis C in the HIV (human immunodeficiency virus) Atlanta V.A. (Veterans Affairs Medical Center) Cohort Study (HAVACS): the effect of coinfection on survival. Clin Infect Dis. 1999;29:150–4.

    Article  PubMed  Google Scholar 

  8. Yin MT, Shi Q, Hoover DR, Anastos K, Sharma A, Young M, et al. Fracture incidence in HIV-infected women: results from the Women’s Interagency HIV Study. AIDS. 2010;24:2679–86.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Young B, Dao CN, Buchacz K, Baker R, Brooks JT. Increased rates of bone fracture among HIV-infected persons in the HIV Outpatient Study (HOPS) compared with the US general population, 2000-2006. Clin Infect Dis. 2011;52:1061–8.

    Article  PubMed  Google Scholar 

  10. Hansen AB, Gerstoft J, Kronborg G, Larsen CS, Pedersen C, Pedersen G, et al. Incidence of low- and high-energy fractures in persons with and without HIV-infection: a Danish population-based cohort study. AIDS. 2012;26(3):285–93.

  11. Collin F, Duval X, Le Moing V, Piroth L, Al Kaied F, Massip P, et al. Ten-year incidence and risk factors of bone fractures in a cohort of treated HIV1-infected adults. AIDS. 2009;23:1021–4.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lo Re 3rd V, Volk J, Newcomb CW, Yang YX, Freeman CP, Hennessy S, et al. Risk of hip fracture associated with hepatitis C virus infection and hepatitis C/HIV Coinfection. Hepatology. 2012. doi:10.1002/hep.25866.

  13. Bedimo R, Maalouf NM, Zhang S, Drechsler H, Tebas P. Osteoporotic fracture risk associated with cumulative exposure to tenofovir and other antiretroviral agents. AIDS. 2012;26(7):825–31.

  14. Hansen AB, Gerstoft J, Kronborg G, Larsen CS, Pedersen C, Pedersen G, et al. Incidence of low and high-energy fractures in persons with and without HIV infection: a Danish population-based cohort study. AIDS. 2012;26:285–93.

    Article  PubMed  Google Scholar 

  15. Dong HV, Cortes YI, Shiau S, Yin MT. Osteoporosis and fractures in HIV/hepatitis C virus coinfection: a systematic review and meta-analysis. AIDS. 2014;28:2119–31.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Loria I, Albanese C, Giusto M, Galtieri PA, Giannelli V, Lucidi C, et al. Bone disorders in patients with chronic liver disease awaiting liver transplantation. Transplant Proc. 2010;42:1191–3.

    Article  CAS  PubMed  Google Scholar 

  17. Carey EJ, Balan V, Kremers WK, Hay JE. Osteopenia and osteoporosis in patients with end-stage liver disease caused by hepatitis C and alcoholic liver disease: not just a cholestatic problem. Liver Transpl. 2003;9:1166–73.

    Article  PubMed  Google Scholar 

  18. Chen CC, Wang SS, Jeng FS, Lee SD. Metabolic bone disease of liver cirrhosis: is it parallel to the clinical severity of cirrhosis? J Gastroenterol Hepatol. 1996;11:417–21.

    Article  CAS  PubMed  Google Scholar 

  19. Gonzalez-Calvin JL, Gallego-Rojo F, Fernandez-Perez R, Casado-Caballero F, Ruiz-Escolano E, Olivares EG. Osteoporosis, mineral metabolism, and serum soluble tumor necrosis factor receptor p55 in viral cirrhosis. J Clin Endocrinol Metab. 2004;89:4325–30.

    Article  CAS  PubMed  Google Scholar 

  20. Lai JC, Shoback DM, Zipperstein J, Lizaola B, Tseng S, Terrault NA. Bone mineral density, bone turnover, and systemic inflammation in non-cirrhotics with chronic hepatitis C. Dig Dis Sci. 2015;60:1813–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schiefke I, Fach A, Wiedmann M, Aretin AV, Schenker E, Borte G, et al. Reduced bone mineral density and altered bone turnover markers in patients with non-cirrhotic chronic hepatitis B or C infection. World J Gastroenterol. 2005;11:1843–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Redondo-Cerezo E, Casado-Caballero F, Martin-Rodriguez JL, Hernandez-Quero J, Escobar-Jimenez F, Gonzalez-Calvin JL. Bone mineral density and bone turnover in non-cirrhotic patients with chronic hepatitis C and sustained virological response to antiviral therapy with peginterferon-alfa and ribavirin. Osteoporos Int. 2014;25:1709–15.

    Article  CAS  PubMed  Google Scholar 

  23. Arase Y, Suzuki F, Suzuki Y, Akuta N, Kobayashi M, Sezaki H, et al. Virus clearance reduces bone fracture in postmenopausal women with osteoporosis and chronic liver disease caused by hepatitis C virus. J Med Virol. 2010;82:390–5.

    Article  CAS  PubMed  Google Scholar 

  24. Bedimo R, Cutrell J, Zhang S, Drechsler H, Gao A, Brown G, et al. Mechanisms of bone disease in HIV and hepatitis C virus: impact of bone turnover, tenofovir exposure, sex steroids and severity of liver disease. AIDS. 2016;30:601–8.

    Article  CAS  PubMed  Google Scholar 

  25. Walker Harris V, Sutcliffe CG, Araujo AB, Chiu GR, Travison TG, Mehta S, et al. Hip bone geometry in HIV/HCV-co-infected men and healthy controls. Osteoporos Int. 2012;23(6):1779–87.

    Article  CAS  PubMed  Google Scholar 

  26. Lo Re 3rd V, Lynn K, Stumm ER, Long J, Nezamzadeh MS, Baker JF, et al. Structural bone deficits in HIV/HCV-coinfected, HCV-monoinfected, and HIV-monoinfected women. J Infect Dis. 2015;212:924–33. A comprehensive study of bone mass and microarchitecture comparing women with HIV/HCV coinfection and HIV monoinfection that provides the best evidence that HIV/HCV coinfection is associated with deficits in bone density and structure.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kovacs A, Karim R, Mack WJ, Xu J, Chen Z, Operskalski E, et al. Activation of CD8 T cells predicts progression of HIV infection in women coinfected with hepatitis C virus. J Infect Dis. 2010;201:823–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kovacs A, Al-Harthi L, Christensen S, Mack W, Cohen M, Landay A. CD8(+) T cell activation in women coinfected with human immunodeficiency virus type 1 and hepatitis C virus. Journal Infect Dis. 2008;197:1402–7.

    Article  Google Scholar 

  29. Balagopal A, Philp FH, Astemborski J, Block TM, Mehta A, Long R, et al. Human immunodeficiency virus-related microbial translocation and progression of hepatitis C. Gastroenterology. 2008;135:226–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, et al. Peak bone mass. Osteoporos Int. 2000;11:985–1009.

    Article  CAS  PubMed  Google Scholar 

  31. Yin MT, Lund E, Shah J, Zhang CA, Foca M, Neu N, et al. Lower peak bone mass and abnormal trabecular and cortical microarchitecture in young men infected with HIV early in life. AIDS. 2014;28:345–53. The first study to demonstrate that HIV infection early in life, either perinatally or during adolescence, is associated with lower peak bone mass and structural deficits, in comparison to uninfected controls. This is especially true among perinatally infected children.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pitukcheewanont P, Safani D, Church J, Gilsanz V. Bone measures in HIV-1 infected children and adolescents: disparity between quantitative computed tomography and dual-energy X-ray absorptiometry measurements. Osteoporos Int. 2005;16:1393–6.

    Article  PubMed  Google Scholar 

  33. Stagi S, Bindi G, Galluzzi F, Galli L, Salti R, de Martino M. Changed bone status in human immunodeficiency virus type 1 (HIV-1) perinatally infected children is related to low serum free IGF-I. Clin Endocrinol (Oxf). 2004;61:692–9.

    Article  Google Scholar 

  34. Jacobson DL, Lindsey JC, Gordon CM, Moye J, Hardin DS, Mulligan K, et al. Total body and spinal bone mineral density across Tanner stage in perinatally HIV-infected and uninfected children and youth in PACTG 1045. AIDS. 2010;24:687–96.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zuccotti G, Vigano A, Gabiano C, Giacomet V, Mignone F, Stucchi S, et al. Antiretroviral therapy and bone mineral measurements in HIV-infected youths. Bone. 2010;46:1633–8.

    Article  PubMed  Google Scholar 

  36. Mulligan K, Harris DR, Emmanuel P, Fielding RA, Worrell C, Kapogiannis BG, et al. Low bone mass in behaviorally HIV-infected young men on antiretroviral therapy: adolescent Trials Network Study 021B. Clin Infect Dis. 2012;55:461–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Negredo E, Domingo P, Ferrer E, Estrada V, Curran A, Navarro A, et al. Peak bone mass in young HIV-infected patients compared with healthy controls. J Acquir Immune Defic Syndr. 2014;65:207–12.

    Article  PubMed  Google Scholar 

  38. Mora S, Zamproni I, Giacomet V, Cafarelli L, Figini C, Vigano A. Analysis of bone mineral content in horizontally HIV-infected children naive to antiretroviral treatment. Calcif Tissue Int. 2005;76:336–40.

    CAS  PubMed  Google Scholar 

  39. Palchetti CZ, Szejnfeld VL, de Menezes Succi RC, Patin RV, Teixeira PF, Machado DM, et al. Impaired bone mineral accrual in prepubertal HIV-infected children: a cohort study. Braz J Infect Dis. 2015;19:623–30.

    Article  PubMed  Google Scholar 

  40. Crabtree NJ, Arabi A, Bachrach LK, Fewtrell M, El-Hajj Fuleihan G, Kecskemethy HH, et al. Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD Pediatric Official Positions. J Clin Densitom. 2014;17:225–42.

    Article  PubMed  Google Scholar 

  41. Zemel BS, Leonard MB, Kelly A, Lappe JM, Gilsanz V, Oberfield S, et al. Height adjustment in assessing dual energy x-ray absorptiometry measurements of bone mass and density in children. J Clin Endocrinol Metab. 2010;95:1265–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arpadi SM, Shiau S, Marx-Arpadi C, Yin MT. Bone health in HIV-infected children, adolescents and young adults: a systematic review. J AIDS Clin Res. 2014. doi:10.4172/2155-6113.1000374.

  43. Vigano A, Zuccotti GV, Puzzovio M, Pivetti V, Zamproni I, Cerini C, et al. Tenofovir disoproxil fumarate and bone mineral density: a 60-month longitudinal study in a cohort of HIV-infected youths. Antivir Ther. 2010;15:1053–8.

    Article  CAS  PubMed  Google Scholar 

  44. Giacomet V, Mora S, Martelli L, Merlo M, Sciannamblo M, Vigano A. A 12-month treatment with tenofovir does not impair bone mineral accrual in HIV-infected children. J Acquir Immune Defic Syndr. 2005;40:448–50.

    Article  CAS  PubMed  Google Scholar 

  45. Gafni RI, Hazra R, Reynolds JC, Maldarelli F, Tullio AN, DeCarlo E, et al. Tenofovir disoproxil fumarate and an optimized background regimen of antiretroviral agents as salvage therapy: impact on bone mineral density in HIV-infected children. Pediatrics. 2006;118:e711–8.

    Article  PubMed  Google Scholar 

  46. Della Negra M, de Carvalho AP, de Aquino MZ, da Silva MT, Pinto J, White K, et al. A randomized study of tenofovir disoproxil fumarate in treatment-experienced HIV-1 infected adolescents. Pediatr Infect Dis J. 2012;31:469–73.

    Article  PubMed  Google Scholar 

  47. Della Negra M, De Carvalho AP, De Aquino MZ, Pinto JA, Da Silva MT, Andreatta KN, et al. Long-term efficacy and safety of tenofovir disoproxil fumarate in HIV-1-infected adolescents failing antiretroviral therapy: the final results of study GS-US-104-0321. Pediatr Infect Dis J. 2015;34:398–405.

    Article  PubMed  Google Scholar 

  48. Aurpibul L, Cressey TR, Sricharoenchai S, Wittawatmongkol O, Sirisanthana V, Phongsamart W, et al. Efficacy, safety and pharmacokinetics of tenofovir disoproxil fumarate in virologic-suppressed HIV-infected children using weight-band dosing. Pediatr Infect Dis J. 2015;34:392–7.

    Article  PubMed  Google Scholar 

  49. Arpadi SM, Shiau S, Strehlau R, Patel F, Kuhn L, Coovadia A, et al. Efavirenz is associated with higher bone mass in South African children with HIV. AIDS. 2016. doi:10.1097/QAD.0000000000001204.

  50. Ransom CE, Huo Y, Patel K, Scott GB, Watts HD, Williams P, et al. Infant growth outcomes after maternal tenofovir disoproxil fumarate use during pregnancy. J Acquir Immune Defic Syndr. 2013;64:374–81.

    Article  CAS  PubMed  Google Scholar 

  51. Siberry GK, Williams PL, Mendez H, Seage 3rd GR, Jacobson DL, Hazra R, et al. Safety of tenofovir use during pregnancy: early growth outcomes in HIV-exposed uninfected infants. AIDS. 2012;26:1151–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gibb DM, Kizito H, Russell EC, Chidziva E, Zalwango E, Nalumenya R, et al. Pregnancy and infant outcomes among HIV-infected women taking long-term ART with and without tenofovir in the DART trial. PLoS Med. 2012;9:e1001217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vigano A, Mora S, Giacomet V, Stucchi S, Manfredini V, Gabiano C, et al. In utero exposure to tenofovir disoproxil fumarate does not impair growth and bone health in HIV-uninfected children born to HIV-infected mothers. Antivir Ther. 2011;16:1259–66.

    Article  CAS  PubMed  Google Scholar 

  54. Siberry GK, Tierney C, Stranix-Chibanda L, Marr C, Shepherd JA, Browning R, et al. Impact of maternal tenofovir disoproxil fumarate (TDF) use on HIV-exposed neuborn bone mineral content. In: Confernce on Retroviruses and Opportunistic Infections (CROI). Boston; 2016.

  55. Jao J, Abrams EJ, Phillips T, Petro G, Zerbe A, Myer L. In utero tenofovir exposure is not associated with fetal long bone growth. Clin Infect Dis. 2016;62(12):1604–9.

  56. Bush S, Magnuson D, Rawlings MK, Hawkins T, McCallister S, Mera Giler R. Racial characteristics of FTC/TDF for pre-exposure prophylaxis users in the US. In the Program and Abstracts of ASM Microbe/ICAAC 2016, June 16-20, 2016, Abstract #2651. 2016.

    Google Scholar 

  57. Fonner VA, Dalglish SL, Kennedy CE, Baggaley R, O’reilly KR, Koechlin FM, Rodolph M, Hodges-Mameletzis I, Grant RM. Effectiveness and safety of oral HIV pre-exposure prophylaxis (PrEP) for all populations: a systematic review and meta-analysis. AIDS. 2016;30(12):1973–83.

  58. Mulligan K, Glidden DV, Anderson PL, Liu A, McMahan V, Gonzales P, et al. Effects of emtricitabine/tenofovir on bone mineral density in HIV-negative persons in a randomized, double-blind, placebo-controlled trial. Clin Infect Dis. 2015;61(4):572–80. This study confirms that BMD loss from tenofovir-containing PrEP occurs during the first year after initiation, largely within the first 6 months.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Liu AY, Vittinghoff E, Sellmeyer DE, Irvin R, Mulligan K, Mayer K, et al. Bone mineral density in HIV-negative men participating in a tenofovir pre-exposure prophylaxis randomized clinical trial in San Francisco. PLoS ONE. 2011;6(8):e23688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mirembe BG, Kelly CW, Mgodi N, Greenspan S, Dai JY, Mayo A, et al. Bone mineral density changes among young, healthy African women receiving oral tenofovir for HIV preexposure prophylaxis. J Acquir Immune Defic Syndr. 2016;71(3):287–94. This important study demonstrates that the BMD loss in young women taking tenofovir-containing PrEP was largely reversible after discontinuation of PrEP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bedimo R, Maalouf NM, Zhang S, Drechsler H, Tebas P. Osteoporotic fracture risk associated with cumulative exposure to tenofovir and other antiretroviral agents. AIDS. 2012;26(7):825–31.

    Article  CAS  PubMed  Google Scholar 

  62. Grant PM, Kitch D, McComsey GA, Dube MP, Haubrich R, Huang J, et al. Low baseline CD4+ count is associated with greater bone mineral density loss after antiretroviral therapy initiation. Clin Infect Dis. 2013;57(10):1483–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stellbrink HJ, Orkin C, Arribas JR, Compston J, Gerstoft J, Van WE, et al. Comparison of changes in bone density and turnover with abacavir-lamivudine versus tenofovir-emtricitabine in HIV-infected adults: 48-week results from the ASSERT study. Clin Infect Dis. 2010;51(8):963–72.

    Article  PubMed  Google Scholar 

  64. Borges A, Hoy J, Florence E, Sedlacek D, Stellbrink H-J, Uzdaviniene V, et al. Antiretrovirals, fractures, and osteonecrosis in a large European HIV cohort. In the Program and Abstracts of CROI 2016, February 22-25, 2016, #46. 2016.

    Google Scholar 

  65. McComsey GA, Kitch D, Daar ES, Tierney C, Jahed NC, Tebas P, et al. Bone mineral density and fractures in antiretroviral-naive persons randomized to receive abacavir-lamivudine or tenofovir disoproxil fumarate-emtricitabine along with efavirenz or atazanavir-ritonavir: Aids Clinical Trials Group A5224s, a substudy of ACTG A5202. J Infect Dis. 2011;203(12):1791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bonjour JP, Chevalley T, Ferrari S, Rizzoli R. The importance and relevance of peak bone mass in the prevalence of osteoporosis. Salud Publica Mex. 2009;51 Suppl 1:S5–S17.

    PubMed  Google Scholar 

  67. Grant R, Mulligan K, McMahan V, Liu A, Guanira J, Chariyalertsak S, et al. Recovery of bone mineral density after stopping oral preexposure prophylaxis. In the Progam and Abstracts of CROI 2016, February 22-25, Abstract 48LB. 2016. An important study demonstrating the reversibility BMD loss associated with PrEP use.

    Google Scholar 

  68. Overton ET, Chan ES, Brown TT, Tebas P, McComsey GA, Melbourne KM, et al. Vitamin D and calcium attenuate bone loss with antiretroviral therapy initiation: a randomized trial. Ann Intern Med. 2015;162(12):815–24. This study demonstrates the utility of a low cost and safe regimen (high-dose vitamin D and calcium carbonate supplementation) for mitigating the BMD loss associated initiation of tenofovir/emtricitabine/efavirenz. However, the efficacy of lower doses of vitamin D or use with other antiretrovirals has not been established.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Landovitz RJ. Preexposure prophylaxis for HIV prevention: what we know and what we still need to know for implementation. Top Antivir Med. 2015;23(2):85–90.

    PubMed  Google Scholar 

  70. Bloch M, Tong W, Hoy J, Baker D, Lee F, Richardson R, et al. Switch from tenofovir to raltegravir increases low bone mineral density and decreases markers of bone turnover over 48 weeks. HIV Med. 2014;15(6):373–80.

    Article  CAS  PubMed  Google Scholar 

  71. Negredo E, Domingo P, Perez-Alvarez N, Gutierrez M, Mateo G, Puig J, et al. Improvement in bone mineral density after switching from tenofovir to abacavir in HIV-1-infected patients with low bone mineral density: two-centre randomized pilot study (OsteoTDF study). J Antimicrob Chemother. 2014;69(12):3368–71.

    Article  CAS  PubMed  Google Scholar 

  72. Pozniak A, Arribas JR, Gathe J, Gupta SK, Post FA, Bloch M, et al. Switching to tenofovir alafenamide, coformulated with elvitegravir, cobicistat, and emtricitabine, in HIV-infected patients with renal impairment: 48-week results from a single-arm, multicenter, open-label phase 3 study. J Acquir Immune Defic Syndr. 2016;71(5):530–7.

  73. Mills A, Arribas JR, Andrade-Villanueva J, DiPerri G, Van LJ, Koenig E, et al. Switching from tenofovir disoproxil fumarate to tenofovir alafenamide in antiretroviral regimens for virologically suppressed adults with HIV-1 infection: a randomised, active-controlled, multicentre, open-label, phase 3, non-inferiority study. Lancet Infect Dis. 2016;16(1):43–52.

  74. Gallant JE, Daar ES, Raffi F, et al. Efficacy and safety of tenofovir alafenamide versus tenofovir disoproxil fumarate given as fixed-dose combinations containing emtricitabine as backbones for treatment of HIV-1 infection in virologically suppressed adults: a randomised, double-blind, active-controlled phase 3 trial. The lancet HIV 2016;3:e158-65.

  75. Curran A, Martinez E, Saumoy M, Del RL, Crespo M, Larrousse M, et al. Body composition changes after switching from protease inhibitors to raltegravir: SPIRAL-LIP substudy. AIDS. 2012;26(4):475–81.

  76. Llibre JM, Hill A. Abacavir and cardiovascular disease: a critical look at the data. Antiviral Res. 2016;132:116–21.

    Article  CAS  PubMed  Google Scholar 

  77. Gallant J, Brunetta J, Crofoot G, Benson P, Mills A, Brinson C, Oka S, Cheng A, Garner W, Fordyce M, et al. Efficacy and safety of switching to a single-tablet regimen of elvitegravir/cobicistat/emtricitabine/tenofovir alafenamide (E/C/F/TAF) in HIV-1/hepatitis B coinfected adults. J Acquir Immune Defic Syndr. 2016. doi:10.1097/QAI.0000000000001069.

  78. D’Avino AY, De Luca A, Lassandro AP, Ciccarelli N, Lombardi F, Giuliani M, et al. Bone mineral density after switching to ATV/r+3TC: a substudy of the AtLaS-M Trial. In the Program and Abstracts of CROI 2016, February 22-25, Boston, Abstract #697. 2016.

    Google Scholar 

  79. Brown TT, Moser C, Currier JS, Ribaudo HJ, Rothenberg J, Kelesidis T, et al. Changes in bone mineral density after initiation of antiretroviral treatment with tenofovir disoproxil fumarate/emtricitabine plus atazanavir/ritonavir, darunavir/ritonavir, or raltegravir. J Infect Dis. 2015;212(8):1241–9.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Moran CA, Weitzmann MN, Ofotokun I. The protease inhibitors and HIV-associated bone loss. Curr Opin HIV AIDS. 2016;11(3):333–42.

    Article  CAS  PubMed  Google Scholar 

  81. Sax PE, Wohl D, Yin MT, Post F, DeJesus E, Saag M, et al. Tenofovir alafenamide versus tenofovir disoproxil fumarate, coformulated with elvitegravir, cobicistat, and emtricitabine, for initial treatment of HIV-1 infection: two randomised, double-blind, phase 3, non-inferiority trials. Lancet. 2015;385(9987):2606–15.

    Article  CAS  PubMed  Google Scholar 

  82. Bernardino JI, Mocroft A, Mallon PW, Wallet C, Gerstoft J, Russell C, et al. Bone mineral density and inflammatory and bone biomarkers after darunavir-ritonavir combined with either raltegravir or tenofovir-emtricitabine in antiretroviral-naive adults with HIV-1: a substudy of the NEAT001/ANRS143 randomised trial. Lancet HIV. 2015;2(11):e464–73.

    Article  PubMed  Google Scholar 

  83. Rockstroh JK, DeJesus E, Henry K, Molina JM, Gathe J, Ramanathan S, et al. A randomized, double-blind comparison of coformulated elvitegravir/cobicistat/emtricitabine/tenofovir DF vs ritonavir-boosted atazanavir plus coformulated emtricitabine and tenofovir DF for initial treatment of HIV-1 infection: analysis of week 96 results. J Acquir Immune Defic Syndr. 2013;62(5):483–6.

    Article  CAS  PubMed  Google Scholar 

  84. Ross AC, Taylor AL, Yaktine HB, DelValle A. Dietary reference intakes: calcium and vitamin D. Food and Nutrition Board. Institute of Medicine. Washington: National Academies Press; 2011.

    Google Scholar 

  85. McComsey GA, Kendall MA, Tebas P, Swindells S, Hogg E, Alston-Smith B, et al. Alendronate with calcium and vitamin D supplementation is safe and effective for the treatment of decreased bone mineral density in HIV. AIDS. 2007;21(18):2473–82.

    Article  CAS  PubMed  Google Scholar 

  86. Huang J, Meixner L, Fernandez S, McCutchan JA. A double-blinded, randomized controlled trial of zoledronate therapy for HIV-associated osteopenia and osteoporosis. AIDS. 2009;23(1):51–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Negredo E, Warriner AH. Pharmacologic approaches to the prevention and management of low bone mineral density in HIV-infected patients. Curr Opin HIV AIDS. 2016;11(3):351–7.

    Article  CAS  PubMed  Google Scholar 

  88. Ofotokun I, Titanji K, Lahiri CD, Vunnava A, Foster A, Sanford SE, et al. A single-dose zoledronic acid infusion prevents antiretroviral therapy-induced bone loss in treatment-naive HIV-infected patients: a phase IIb trial. Clin Infect Dis. 2016;63(5):663–71. This study demonstrates that a single dose of zoledronic acid prevents bone loss associated with initiation of antiretroviral therapy; however, its role in management has not been clearly established.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Yin.

Ethics declarations

Conflict of Interest

Michael T. Yin has served as a consultant for Gilead.

Todd T. Brown reports personal fees from Gilead Sciences, Merck, BMS, EMD-Serono, and Theratechnologies.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Complications of Antiretroviral Therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, M.T., Brown, T.T. HIV and Bone Complications: Understudied Populations and New Management Strategies. Curr HIV/AIDS Rep 13, 349–358 (2016). https://doi.org/10.1007/s11904-016-0341-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-016-0341-9

Keywords

Navigation