Skip to main content

Advertisement

Log in

Management of Myelofibrosis-Related Cytopenias

  • Myeloproliferative Neoplasms (B Stein, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cytopenias, particularly anemia, are frequently encountered in patients with myelofibrosis. Management of cytopenias in myelofibrosis can be very challenging because current therapeutic interventions are only of modest efficacy and ruxolitinib, the only approved drug for myelofibrosis, is myelosuppressive. Yet, dose optimization of ruxolitinib is important for its survival benefit in patients with advanced disease. We sought to summarize the data on treatments for cytopenias available at present and review promising agents in development and emerging strategies.

Recent Findings

The activin receptor ligand traps hold considerable promise for the treatment of anemia and could represent an attractive combination strategy with ruxolitinib. Low-dose thalidomide, which could offset both anemia and thrombocytopenia caused by ruxolitinib, represents another potential partner for ruxolitinib. The anti-fibrotic agent PRM-151 produced sustained improvements in cytopenias in some patients, and further data on this drug are eagerly awaited. Finally, several preclinical leads with translational potential are worthy of clinical investigation as strategies to halt/reverse bone marrow fibrosis and thereby improve cytopenias.

Summary

Cytopenias remain a significant hurdle in myelofibrosis management, but several novel investigational agents hold considerable promise for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129(6):667–79.

    Article  PubMed  CAS  Google Scholar 

  2. •• Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 2012;366(9):799–807. First report of COMFORT-I, one of the two pivotal trials of ruxolitinib in MF.

  3. •• Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366(9):787–98. First report of COMFORT-II, one of the two pivotal trials of ruxolitinib in MF.

    Article  PubMed  CAS  Google Scholar 

  4. Gupta V, Harrison C, Hexner EO, Al-Ali HK, Foltz L, Montgomery M, et al. The impact of anemia on overall survival in patients with myelofibrosis treated with ruxolitinib in the COMFORT studies. Haematologica. 2016;101(12):e482–4.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Al-Ali HK, Stalbovskaya V, Gopalakrishna P, Perez-Ronco J, Foltz L. Impact of ruxolitinib treatment on the hemoglobin dynamics and the negative prognosis of anemia in patients with myelofibrosis. Leuk Lymphoma. 2016;57(10):2464–7.

    Article  PubMed  Google Scholar 

  6. • Verstovsek S, Kantarjian HM, Estrov Z, Cortes JE, Thomas DA, Kadia T, et al. Long-term outcomes of 107 patients with myelofibrosis receiving JAK1/JAK2 inhibitor ruxolitinib: survival advantage in comparison to matched historical controls. Blood. 2012;120(6):1202–9. The first study to demonstrate a survival advantage for ruxolitinib in MF.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. • Vannucchi AM, Kantarjian HM, Kiladjian JJ, Gotlib J, Cervantes F, Mesa RA, et al. A pooled analysis of overall survival in COMFORT-I and COMFORT-II, 2 randomized phase 3 trials of ruxolitinib for the treatment of myelofibrosis. Haematologica 2015. A pooled analysis of the COMFORT trials also showing a survival benefit for ruxolitinib-treated patients.

  8. Miller CB, Komrokji RS, Mesa RA, Sun W, Montgomery M, Verstovsek S. Practical measures of clinical benefit with ruxolitinib therapy: an exploratory analysis of COMFORT-I. Clin Lymphoma Myeloma Leuk. 2017;17(8):479–87.

    Article  PubMed  Google Scholar 

  9. •• Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. The 2016 revision to the WHO classification of myeloid neoplasms.

    Article  PubMed  CAS  Google Scholar 

  10. •• Barbui T, Thiele J, Passamonti F, Rumi E, Boveri E, Ruggeri M, et al. Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: an international study. J Clin Oncol. 2011;29(23):3179–84. Seminal paper that showed significant differences in outcomes between patients with ET and those with pre-fibrotic PMF.

    Article  PubMed  Google Scholar 

  11. Barosi G, Rosti V, Bonetti E, Campanelli R, Carolei A, Catarsi P, et al. Evidence that prefibrotic myelofibrosis is aligned along a clinical and biological continuum featuring primary myelofibrosis. PLoS One. 2012;7(4):e35631.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. • Guglielmelli P, Pacilli A, Rotunno G, Rumi E, Rosti V, Delaini F, et al. Presentation and outcome of patients with 2016 WHO diagnosis of prefibrotic and overt primary myelofibrosis. Blood. 2017;129(24):3227–36. Comparison of the clinical features and outcomes of a large cohort of patients with pre-fibrotic or overt PMF.

    Article  PubMed  CAS  Google Scholar 

  13. • Cervantes F, Dupriez B, Pereira A, Passamonti F, Reilly JT, Morra E, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113(13):2895–901. Original report describing the development and validation of the IPSS.

    Article  PubMed  CAS  Google Scholar 

  14. • Passamonti F, Cervantes F, Vannucchi AM, Morra E, Rumi E, Pereira A, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (international working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2010;115(9):1703–8. Original report describing the development and validation of the DIPSS.

    Article  PubMed  CAS  Google Scholar 

  15. • Gangat N, Caramazza D, Vaidya R, George G, Begna K, Schwager S, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29(4):392–7. Original report describing the development and validation of the DIPSS-plus.

    Article  PubMed  Google Scholar 

  16. • Tam CS, Kantarjian H, Cortes J, Lynn A, Pierce S, Zhou L, et al. Dynamic model for predicting death within 12 months in patients with primary or post-polycythemia vera/essential thrombocythemia myelofibrosis. J Clin Oncol. 2009;27(33):5587–93. Identification of features of "accelerated phase" of myelofibrosis.

    Article  PubMed  PubMed Central  Google Scholar 

  17. • Passamonti F, Giorgino T, Mora B, Guglielmelli P, Rumi E, Maffioli M, et al. A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis. Leukemia 2017. Description and validation of the MYSEC-PM, a prognostic model specifically for patients with post-PV or post-ET MF.

  18. • Tefferi A, Cervantes F, Mesa R, Passamonti F, Verstovsek S, Vannucchi AM, et al. Revised response criteria for myelofibrosis: International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and European LeukemiaNet (ELN) consensus report. Blood. 2013;122(8):1395–8. The most recent iteration of the IWG-MRT response criteria for MF.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Cervantes F, Isola IM, Alvarez-Larran A, Hernandez-Boluda JC, Correa JG, Pereira A. Danazol therapy for the anemia of myelofibrosis: assessment of efficacy with current criteria of response and long-term results. Ann Hematol. 2015;94(11):1791–6.

    Article  PubMed  CAS  Google Scholar 

  20. Cervantes F. How I treat myelofibrosis. Blood. 2014;124(17):2635–42.

    Article  PubMed  CAS  Google Scholar 

  21. Gowin K, Kosiorek H, Dueck A, Mascarenhas J, Hoffman R, Reeder C, et al. Multicenter phase 2 study of combination therapy with ruxolitinib and danazol in patients with myelofibrosis. Leuk Res. 2017;60:31–5.

    Article  PubMed  CAS  Google Scholar 

  22. Townsley DM, Dumitriu B, Liu D, Biancotto A, Weinstein B, Chen C, et al. Danazol treatment for telomere diseases. N Engl J Med. 2016;374(20):1922–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Cervantes F, Alvarez-Larran A, Hernandez-Boluda JC, Sureda A, Torrebadell M, Montserrat E. Erythropoietin treatment of the anaemia of myelofibrosis with myeloid metaplasia: results in 20 patients and review of the literature. Br J Haematol. 2004;127(4):399–403.

    Article  PubMed  CAS  Google Scholar 

  24. Cervantes F, Alvarez-Larran A, Hernandez-Boluda JC, Sureda A, Granell M, Vallansot R, et al. Darbepoetin-alpha for the anaemia of myelofibrosis with myeloid metaplasia. Br J Haematol. 2006;134(2):184–6.

    Article  PubMed  CAS  Google Scholar 

  25. Hernandez-Boluda JC, Correa JG, Garcia-Delgado R, Martinez-Lopez J, Alvarez-Larran A, Fox ML, et al. Predictive factors for anemia response to erythropoiesis-stimulating agents in myelofibrosis. Eur J Haematol. 2017;98(4):407–14.

    Article  PubMed  CAS  Google Scholar 

  26. McMullin MF, Harrison CN, Niederwieser D, Demuynck H, Jakel N, Gopalakrishna P, et al. The use of erythropoiesis-stimulating agents with ruxolitinib in patients with myelofibrosis in COMFORT-II: an open-label, phase 3 study assessing efficacy and safety of ruxolitinib versus best available therapy in the treatment of myelofibrosis. Exp Hematol Oncol 2015 4:26-015-0021-2. eCollection 2015.

  27. Barosi G, Elliott M, Canepa L, Ballerini F, Piccaluga PP, Visani G, et al. Thalidomide in myelofibrosis with myeloid metaplasia: a pooled-analysis of individual patient data from five studies. Leuk Lymphoma. 2002;43(12):2301–7.

    Article  PubMed  CAS  Google Scholar 

  28. Thomas DA, Giles FJ, Albitar M, Cortes JE, Verstovsek S, Faderl S, et al. Thalidomide therapy for myelofibrosis with myeloid metaplasia. Cancer. 2006;106(9):1974–84.

    Article  PubMed  CAS  Google Scholar 

  29. Abgrall JF, Guibaud I, Bastie JN, Flesch M, Rossi JF, Lacotte-Thierry L, et al. Thalidomide versus placebo in myeloid metaplasia with myelofibrosis: a prospective, randomized, double-blind, multicenter study. Haematologica. 2006;91(8):1027–32.

    PubMed  CAS  Google Scholar 

  30. Mesa RA, Steensma DP, Pardanani A, Li CY, Elliott M, Kaufmann SH, et al. A phase 2 trial of combination low-dose thalidomide and prednisone for the treatment of myelofibrosis with myeloid metaplasia. Blood. 2003;101(7):2534–41.

    Article  PubMed  CAS  Google Scholar 

  31. Weinkove R, Reilly JT, McMullin MF, Curtin NJ, Radia D, Harrison CN. Low-dose thalidomide in myelofibrosis. Haematologica. 2008;93(7):1100–1.

    Article  PubMed  CAS  Google Scholar 

  32. Marchetti M, Barosi G, Balestri F, Viarengo G, Gentili S, Barulli S, et al. Low-dose thalidomide ameliorates cytopenias and splenomegaly in myelofibrosis with myeloid metaplasia: a phase II trial. J Clin Oncol. 2004;22(3):424–31.

    Article  PubMed  CAS  Google Scholar 

  33. Tefferi A, Cortes J, Verstovsek S, Mesa RA, Thomas D, Lasho TL, et al. Lenalidomide therapy in myelofibrosis with myeloid metaplasia. Blood. 2006;108(4):1158–64.

    Article  PubMed  CAS  Google Scholar 

  34. Quintas-Cardama A, Kantarjian HM, Manshouri T, Thomas D, Cortes J, Ravandi F, et al. Lenalidomide plus prednisone results in durable clinical, histopathologic, and molecular responses in patients with myelofibrosis. J Clin Oncol. 2009;27(28):4760–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Tefferi A, Barosi G, Mesa RA, Cervantes F, Deeg HJ, Reilly JT, et al. International working group (IWG) consensus criteria for treatment response in myelofibrosis with myeloid metaplasia, for the IWG for myelofibrosis research and treatment (IWG-MRT). Blood. 2006;108(5):1497–503.

    Article  PubMed  CAS  Google Scholar 

  36. Mesa RA, Yao X, Cripe LD, Li CY, Litzow M, Paietta E, et al. Lenalidomide and prednisone for myelofibrosis: eastern cooperative oncology group (ECOG) phase 2 trial E4903. Blood. 2010;116(22):4436–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Chihara D, Masarova L, Newberry KJ, Maeng H, Ravandi F, Garcia-Manero G, et al. Long-term results of a phase II trial of lenalidomide plus prednisone therapy for patients with myelofibrosis. Leuk Res. 2016;48:1–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Daver N, Cortes J, Newberry K, Jabbour E, Zhou L, Wang X, et al. Ruxolitinib in combination with lenalidomide as therapy for patients with myelofibrosis. Haematologica. 2015;100(8):1058–63.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Tefferi A, Lasho TL, Mesa RA, Pardanani A, Ketterling RP, Hanson CA. Lenalidomide therapy in del(5)(q31)-associated myelofibrosis: cytogenetic and JAK2V617F molecular remissions. Leukemia. 2007;21(8):1827–8.

    Article  PubMed  CAS  Google Scholar 

  40. Takahashi K, Cortes J, Pierce S, Abruzzo L, Kantarjian H, Verstovsek S. Chromosome 5q deletion is extremely rare in patients with myelofibrosis. Leuk Res. 2013;37(5):552–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Tefferi A, Verstovsek S, Barosi G, Passamonti F, Roboz GJ, Gisslinger H, et al. Pomalidomide is active in the treatment of anemia associated with myelofibrosis. J Clin Oncol. 2009;27(27):4563–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Begna KH, Mesa RA, Pardanani A, Hogan WJ, Litzow MR, McClure RF, et al. A phase-2 trial of low-dose pomalidomide in myelofibrosis. Leukemia. 2011;25(2):301–4.

    Article  PubMed  CAS  Google Scholar 

  43. Begna KH, Pardanani A, Mesa R, Litzow MR, Hogan WJ, Hanson CA, et al. Long-term outcome of pomalidomide therapy in myelofibrosis. Am J Hematol. 2012;87(1):66–8.

    Article  PubMed  CAS  Google Scholar 

  44. Daver N, Shastri A, Kadia T, Quintas-Cardama A, Jabbour E, Konopleva M, et al. Modest activity of pomalidomide in patients with myelofibrosis and significant anemia. Leuk Res. 2013;37(11):1440–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Daver N, Shastri A, Kadia T, Newberry K, Pemmaraju N, Jabbour E, et al. Phase II study of pomalidomide in combination with prednisone in patients with myelofibrosis and significant anemia. Leuk Res. 2014;38(9):1126–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Tefferi A, Al-Ali HK, Barosi G, Devos T, Gisslinger H, Jiang Q, et al. A randomized study of pomalidomide vs placebo in persons with myeloproliferative neoplasm-associated myelofibrosis and RBC-transfusion dependence. Leukemia 2016.

  47. Schlenk RF, Stegelmann F, Reiter A, Jost E, Gattermann N, Hebart H, et al. Pomalidomide in myeloproliferative neoplasm-associated myelofibrosis. Leukemia. 2017;31(4):889–95.

    Article  PubMed  CAS  Google Scholar 

  48. Stegelmann F, Bangerter M, Heidel FH, Griesshammer M, Hebart H, Hochhaus A, et al. A phase-Ib/II study of ruxolitinib plus pomalidomide in myelofibrosis. Blood. 2015;126(23):826.

    Google Scholar 

  49. Mesa RA. How I treat symptomatic splenomegaly in patients with myelofibrosis. Blood. 2009;113(22):5394–400.

    Article  PubMed  CAS  Google Scholar 

  50. • Mesa RA, Nagorney DS, Schwager S, Allred J, Tefferi A. Palliative goals, patient selection, and perioperative platelet management: outcomes and lessons from 3 decades of splenectomy for myelofibrosis with myeloid metaplasia at the Mayo Clinic. Cancer. 2006;107(2):361–70. Important paper reporting the Mayo Clinic experience with splenectomy for patients with MF.

    Article  PubMed  Google Scholar 

  51. Fields SZ, Parshad S, Anne M, Raftopoulos H, Alexander MJ, Sherman ML, et al. Activin receptor antagonists for cancer-related anemia and bone disease. Expert Opin Investig Drugs. 2013;22(1):87–101.

    Article  PubMed  CAS  Google Scholar 

  52. • Iancu-Rubin C, Mosoyan G, Wang J, Kraus T, Sung V, Hoffman R. Stromal cell-mediated inhibition of erythropoiesis can be attenuated by Sotatercept (ACE-011), an activin receptor type II ligand trap. Exp Hematol. 2013;41(2):155–166.e17. Preclinical work illustrating mechanism of action of sotatercept in improving anemia in MF.

    Article  PubMed  CAS  Google Scholar 

  53. Carrancio S, Markovics J, Wong P, Leisten J, Castiglioni P, Groza MC, et al. An activin receptor IIA ligand trap promotes erythropoiesis resulting in a rapid induction of red blood cells and haemoglobin. Br J Haematol. 2014;165(6):870–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. • Bose P, Daver N, Pemmaraju N, Jabbour EJ, Estrov Z, Pike A, et al. Sotatercept (ACE-011) Alone and in Combination with Ruxolitinib in Patients (pts) with Myeloproliferative Neoplasm (MPN)-Associated Myelofibrosis (MF) and Anemia. Blood. 2017;130:255. Clinical trial of sotatercept in anemic patients with MF that has shown promising results.

    Google Scholar 

  55. Komrokji R, Garcia-Manero G, Ades L, Prebet T, Steensma DP, Jurcic JG, et al. Sotatercept with long-term extension for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes: a phase 2, dose-ranging trial. Lancet Haematol. 2018;5(2):e63–72.

    Article  PubMed  Google Scholar 

  56. Platzbecker U, Germing U, Gotze KS, Kiewe P, Mayer K, Chromik J, et al. Luspatercept for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes (PACE-MDS): a multicentre, open-label phase 2 dose-finding study with long-term extension study. Lancet Oncol. 2017;18(10):1338–47.

    Article  PubMed  CAS  Google Scholar 

  57. Pemmaraju N, Carter BZ, Kantarjian HM, Bose P, Kadia T, Jabbour EJ, et al. Interim phase 2 clinical trial results for LCL161, an oral Smac mimetic, in patients with intermediate or high risk myelofibrosis. Blood. 2017;130(28):256.

    Google Scholar 

  58. Fleischman AG, Aichberger KJ, Luty SB, Bumm TG, Petersen CL, Doratotaj S, et al. TNFalpha facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms. Blood. 2011;118(24):6392–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. •• Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell. 1998;93(3):397–409. Preclinical paper demonstrating a critical role for JAK2 in hematopoiesis.

    Article  PubMed  CAS  Google Scholar 

  60. Meyer SC, Levine RL. Molecular pathways: molecular basis for sensitivity and resistance to JAK kinase inhibitors. Clin Cancer Res. 2014;20(8):2051–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. • Pardanani A, Harrison C, Cortes JE, Cervantes F, Mesa RA, Milligan D, et al. Safety and Efficacy of Fedratinib in Patients With Primary or Secondary Myelofibrosis: A Randomized Clinical Trial. JAMA Oncol. 2015;1(5):643–51. The JAKARTA trial of fedratinib vs. placebo in JAK inhibitor-naïve patients with MF.

    Article  PubMed  Google Scholar 

  62. • Asshoff M, Petzer V, Warr MR, Haschka D, Tymoszuk P, Demetz E, et al. Momelotinib inhibits ACVR1/ALK2, decreases hepcidin production and ameliorates anemia of chronic disease in rodents. Blood 2017. Preclinical work suggesting a potential mechanism of action for momelotinib in improving anemia.

  63. Pardanani A, Gotlib JR, Gupta V, Roberts AW, Wadleigh M, Sirhan S, et al. Update on the long-term efficacy and safety of Momelotinib, a JAK1 and JAK2 inhibitor, for the treatment of myelofibrosis. Blood. 2013;122:108.

    Google Scholar 

  64. Gupta V, Mesa RA, Deininger MW, Rivera CE, Sirhan S, Brachmann CB, et al. A phase 1/2, open-label study evaluating twice-daily administration of momelotinib in myelofibrosis. Haematologica. 2016;

  65. Mesa RA, Kiladjian JJ, Catalano JV, Devos T, Egyed M, Hellmann A, et al. SIMPLIFY-1: A Phase III Randomized Trial of Momelotinib Versus Ruxolitinib in Janus Kinase Inhibitor-Naive Patients With Myelofibrosis. J Clin Oncol 2017:JCO2017734418.

  66. Harrison CN, Vannucchi AM, Platzbecker U, Cervantes F, Gupta V, Lavie D, et al. Momelotinib versus best available therapy in patients with myelofibrosis previously treated with ruxolitinib (SIMPLIFY 2): a randomised, open-label, phase 3 trial. Lancet Haematol 2017.

  67. • Mesa RA, Vannucchi AM, Mead A, Egyed M, Szoke A, Suvorov A, et al. Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): an international, randomised, phase 3 trial. Lancet Haematol 2017. Results of the PERSIST-1 phase III trial that compared pacritinib to BAT in JAK inhibitor-naïve patients with MF.

  68. • Mascarenhas J, Hoffman R, Talpaz M, Gerds AT, Stein B, Gupta V, et al. Pacritinib vs Best Available Therapy, Including Ruxolitinib, in Patients With Myelofibrosis: A Randomized Clinical Trial. JAMA Oncol 2018. Results of the PERSIST-2 phase III trial that compared two doses of pacritinib to BAT in thrombocytopenic subjects with MF who could have received prior ruxolitinib.

  69. CTI BioPharma Provides Update On Clinical Hold Of Investigational Agent Pacritinib And New Drug Application In U.S. 2016; Available at: http://investors.ctibiopharma.com/phoenix.zhtml?c=92775&p=RssLanding&cat=news&id=2137027.

  70. CTI BioPharma Announces Removal Of Full Clinical Hold On Pacritinib. 2017; Available at: http://www.prnewswire.com/news-releases/cti-biopharma-announces-removal-of-full-clinical-hold-on-pacritinib-300386115.html. Accessed February 15, 2017.

  71. Mascarenhas JO, Talpaz M, Gupta V, Foltz LM, Savona MR, Paquette R, et al. Primary analysis of a phase II open-label trial of INCB039110, a selective JAK1 inhibitor, in patients with myelofibrosis. Haematologica 2016.

  72. Spivak JL. Myeloproliferative neoplasms. N Engl J Med. 2017;376(22):2168–81.

    Article  PubMed  CAS  Google Scholar 

  73. • Verstovsek S, Manshouri T, Pilling D, Bueso-Ramos CE, Newberry KJ, Prijic S, et al. Role of neoplastic monocyte-derived fibrocytes in primary myelofibrosis. J Exp Med. 2016;213(9):1723–40. Demonstration that the fibrocytes that drive bone marrow fibrosis in MF are clonal (neoplastic) and are derived from monocytes, challenging the long-held notion that BM fibrosis in MF is a reactive process.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Guglielmelli P, Rotunno G, Pacilli A, Rumi E, Rosti V, Delaini F, et al. Prognostic impact of bone marrow fibrosis in primary myelofibrosis. A study of the AGIMM group on 490 patients. Am J Hematol. 2016;91(9):918–22.

    Article  PubMed  CAS  Google Scholar 

  75. • Guglielmelli P, Lasho TL, Rotunno G, Mudireddy M, Mannarelli C, Nicolosi M, et al. MIPSS70: Mutation-Enhanced International Prognostic Score System for Transplantation-Age Patients With Primary Myelofibrosis. J Clin Oncol 2017:JCO2017764886. A prognostic scoring system for transplant-age patients with MF that incorporates clinical variables as well as mutational information.

  76. • Verstovsek S, Mesa RA, Gotlib J, Gupta V, DiPersio JF, Catalano JV, et al. Long-term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial. J Hematol Oncol. 2017;10(1):55–017-0417-z. Five-year follow-up of COMFORT-I.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. • Harrison CN, Vannucchi AM, Kiladjian JJ, Al-Ali HK, Gisslinger H, Knoops L, et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia 2016. Five-year follow-up of COMFORT-II.

  78. Mascarenhas J, Li T, Sandy L, Newsom C, Petersen B, Godbold J, et al. Anti-transforming growth factor-beta therapy in patients with myelofibrosis. Leuk Lymphoma. 2014;55(2):450–2.

    Article  PubMed  Google Scholar 

  79. Verstovsek S, Savona MR, Mesa RA, Dong H, Maltzman JD, Sharma S, et al. A phase 2 study of simtuzumab in patients with primary, post-polycythaemia vera or post-essential thrombocythaemia myelofibrosis. Br J Haematol. 2017;176:939–49.

    Article  PubMed  CAS  Google Scholar 

  80. Duffield JS, Lupher ML Jr. PRM-151 (recombinant human serum amyloid P/pentraxin 2) for the treatment of fibrosis. Drug News Perspect. 2010;23(5):305–15.

    Article  PubMed  CAS  Google Scholar 

  81. Verstovsek S, Mesa RA, Foltz LM, Gupta V, Mascarenhas JO, Ritchie EK, et al. Phase 2 trial of PRM-151, an anti-fibrotic agent, in patients with myelofibrosis: stage 1 results. Blood. 2014;124:713.

    Google Scholar 

  82. Verstovsek S, Mesa RA, Foltz LM, Gupta V, Mascarenhas JO, Ritchie EK, et al. PRM-151 in myelofibrosis: durable efficacy and safety at 72 weeks. Blood. 2015;126(23):56.

    Google Scholar 

  83. Maekawa T, Osawa Y, Izumi T, Nagao S, Takano K, Okada Y, et al. Myeloproliferative leukemia protein activation directly induces fibrocyte differentiation to cause myelofibrosis. Leukemia. 2017;31:2709–16.

    Article  PubMed  CAS  Google Scholar 

  84. Yue L, Bartenstein M, Zhao W, Ho WT, Han Y, Murdun C, et al. Efficacy of ALK5 inhibition in myelofibrosis. JCI Insight. 2017;2(7):e90932.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Schneider RK, Mullally A, Dugourd A, Peisker F, Hoogenboezem R, Van Strien PMH, et al. Gli1+ mesenchymal stromal cells are a key driver of bone marrow fibrosis and an important cellular therapeutic target. Cell Stem Cell. 2017;20(6):785–800.e8.

    Article  PubMed  CAS  Google Scholar 

  86. Gerds AT, Tauchi T, Ritchie EK, Deininger MW, Jamieson CH, Mesa R, et al. Phase I/II trial of Glasdegib in heavily pre-treated patients with primary or secondary myelofibrosis. Blood. 2017;130(28):258.

    Google Scholar 

  87. Sasaki K, Gotlib JR, Mesa RA, Newberry KJ, Ravandi F, Cortes JE, et al. Phase II evaluation of IPI-926, an oral hedgehog inhibitor, in patients with myelofibrosis. Leuk Lymphoma. 2015;56(7):2092–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Wen QJ, Yang Q, Goldenson B, Malinge S, Lasho T, Schneider RK, et al. Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition. Nat Med. 2015;21(12):1473–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Gilles L, Arslan AD, Marinaccio C, Wen QJ, Arya P, McNulty M, et al. Downregulation of GATA1 drives impaired hematopoiesis in primary myelofibrosis. J Clin Invest. 2017;127(4):1316–20.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Gangat N, Swords RT, Stein BL, Marinaccio C, Watts JM, Frankfurt O, et al. A multicenter, open-label, pilot study of alisertib (MLN8237), a novel inhibitor of aurora kinase a, in myelofibrosis. Blood. 2017;130(128):1631.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prithviraj Bose.

Ethics declarations

Conflict of Interest

Prithviraj Bose reports grants and personal fees from Incyte Corporation, grants from CTI BioPharma, and grants from Celgene Corporation, outside the submitted work. Srdan Verstovsek declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Myeloproliferative Neoplasms

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bose, P., Verstovsek, S. Management of Myelofibrosis-Related Cytopenias. Curr Hematol Malig Rep 13, 164–172 (2018). https://doi.org/10.1007/s11899-018-0447-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-018-0447-9

Keywords

Navigation