Skip to main content

Advertisement

Log in

Pharmacologic Strategies to Target Oxidative Stress in Heart Failure

  • Pharmacologic Therapy (W. H. Wilson Tang, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS), which are involved in normal physiological functions at low concentrations, can have deleterious effects when produced in excess. Over time, ROS may result in a pathological state of imbalance known as oxidative stress. Oxidative stress has long been implicated in many diseases, and is consistently associated with poor outcomes in heart failure. Most therapies that are currently being used may provide some reduction in oxidative stress, but there is no consensus on the clinical outcomes of various antioxidants. Currently, there are no antioxidant therapies that are being used routinely to specifically target oxidative stress in patients with heart failure. This article reviews the current understanding of ROS generation, and the potential for novel pharmacologic strategies to target oxidative stress in heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics—2011 update. Circulation. 2011;123:209–18.

    Article  Google Scholar 

  2. Finkel T. Signal transduction by reactive oxygen species in non-phagocytic cells. J Leukoc Biol. 1999;65:337–40.

    PubMed  CAS  Google Scholar 

  3. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300.

    PubMed  CAS  Google Scholar 

  4. •• Sugamura K, Keaney JJF. Reactive oxygen species in cardiovascular disease. Free Radical Biology and Medicine. 2011;51:978-992. This is an excellent review article outlining the reactive oxygen species in multiple cardiovascular diseases in addition to heart failure.

    Article  PubMed  CAS  Google Scholar 

  5. Dreher D, Junod AF. Role of oxygen free radicals in cancer development. Eur J Cancer. 1996;32A:30–8.

    Article  PubMed  CAS  Google Scholar 

  6. Whaley-Connell A, McCullough PA, Sowers JR. The role of oxidative stress in the metabolic syndrome. Rev Cardiovasc Med. 2011;12:21–9.

    PubMed  Google Scholar 

  7. Facecchia K, Fochesato LA, Ray SD, et al. Oxidative toxicity in neurodegenerative diseases: role of mitochondrial dysfunction and therapeutic strategies. Journal of Toxicology 2011.

  8. Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest. 2005;115(3):500–8.

    PubMed  CAS  Google Scholar 

  9. Bertrand ME. Provision of cardiovascular protection by ACE inhibitors: a review of recent trials. Curr Med Res Opin. 2004;20:1559–69.

    Article  PubMed  CAS  Google Scholar 

  10. Ono H, Minatoguchi S, Watanabe K, et al. Candesartan decreases carotid intima-media thickness by enhancing nitric oxide and decreasing oxidative stress in patients with hypertension. Hypertens Res. 2008;31:271–9.

    Article  CAS  Google Scholar 

  11. Ishimitsu T, Numabe A, Masuda T, et al. Angiotensin-II receptor antagonist combined with calcium channel blocker or diuretic for essential hypertension. Hypertension Research: Official Journal of the Japanese Society of Hypertension. 2009;32:962–8.

    Article  CAS  Google Scholar 

  12. Li J, Sun YM, Wang LF, et al. Comparison of effects of simvastatin versus atorvastatin on oxidative stress in patients with coronary heart disease. Clin Cardiol. 2010;33:222–7.

    Article  PubMed  Google Scholar 

  13. Shah AM, Seddon M, Looi YH. Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart. 2007;93:903–7.

    Article  PubMed  Google Scholar 

  14. Harrison R. Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med. 2002;33:774–97.

    Article  PubMed  CAS  Google Scholar 

  15. Jarasch E-D, Grund C, Bruder G, et al. Localization of xanthine oxidase in mammary-gland epithelium and capillary endothelium. Cell. 1981;25:67–82.

    Article  PubMed  CAS  Google Scholar 

  16. Dejong J, Schoemaker R, Dejonge R, et al. Enhanced expression and activity of xanthine oxidoreductase in the failing heart. J Mol Cell Cardiol. 2000;32:2083–9.

    Article  CAS  Google Scholar 

  17. Spiekermann S, Landmesser U, Dikalov S, et al. Electron spin resonance characterization of vascular xanthine and NAD(P)H oxidase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation. Circulation. 2003;107:1383–9.

    Article  PubMed  CAS  Google Scholar 

  18. Anker SD, Doehner W, Rauchhaus M, et al. Uric acid and survival in chronic heart failure. Circulation. 2003;107:1991–7.

    Article  PubMed  Google Scholar 

  19. Hare JM. Uric acid predicts clinical outcomes in heart failure: insights regarding the role of xanthine oxidase and uric acid in disease pathophysiology. Circulation. 2003;107:1951–3.

    Article  PubMed  Google Scholar 

  20. Ekelund UE, Harrison RW, Shokek O, et al. Intravenous allopurinol decreases myocardial oxygen consumption and increases mechanical efficiency in dogs with pacing-induced heart failure. Circulation. 1999;85:437–45.

    CAS  Google Scholar 

  21. Bergamini C, Cicoira M, Rossi A, Vassanelli C. Oxidative stress and hyperuricaemia: pathophysiology, clinical relevance, and therapeutic implications in chronic heart failure. Eur J Heart Fail. 2009;11:444–52.

    Article  PubMed  CAS  Google Scholar 

  22. Babior BM, Lambeth JD, Nauseef W. The neutrophil NADPH oxidase. Arch Biochem Biophys. 2002;397:342–4.

    Article  PubMed  CAS  Google Scholar 

  23. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245–313.

    Article  PubMed  CAS  Google Scholar 

  24. Song E, Jaishankar G, Saleh H, et al. Chronic granulomatous disease: a review of the infectious and inflammatory complications. Clin Mol Allergy. 2011;9:10–0.

    Article  PubMed  CAS  Google Scholar 

  25. Lambeth JD. Nox enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4:181–9.

    Article  PubMed  CAS  Google Scholar 

  26. Wingler K, Wunsch S, Kreutz R, et al. Upregulation of the vascular NAD(P)H-oxidase isoforms Nox1 and Nox4 by the renin-angiotensin system in vitro and in vivo. Free Radic Biol Med. 2001;31:1456–64.

    Article  PubMed  CAS  Google Scholar 

  27. Lassegue B, Sorescu D, Szocs K, et al. Novel gp91(phox) homologues in vascular smooth muscle cells: nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circulation. 2001;88:888–94.

    Article  CAS  Google Scholar 

  28. Johar S, Cave AC, Narayanapanicker A, et al. Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB. 2006;20:1546–8.

    Article  CAS  Google Scholar 

  29. Mollnau H, Wendt M, Szocs K, et al. Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circulation. 2002;90:E58–65.

    Article  Google Scholar 

  30. Lee VC, Rhew DC, Dylan M, et al. Meta-analysis: angiotensin-receptor blockers in chronic heart failure and high-risk acute myocardial infarction. Ann Intern Med. 2004;141:693–704.

    PubMed  CAS  Google Scholar 

  31. Bell RM, Cave AC, Johar S, et al. Pivotal role of NOX-2-containing NADPH oxidase in early ischemic preconditioning. FASEB. 2005;19:2037–9.

    CAS  Google Scholar 

  32. Looi YH, Grieve DJ, Siva A, et al. Involvement of NOX2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction. Hypertension. 2008;51:319–25.

    Article  PubMed  CAS  Google Scholar 

  33. Vignais PV. The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. CMLS. 2002;59:1428–59.

    Article  PubMed  CAS  Google Scholar 

  34. Satoh M, Ogita H, Takeshita K, et al. Requirement of Rac1 in the development of cardiac hypertrophy. Proc Natl Acad Sci U S A. 2006;103:7432–7.

    Article  PubMed  CAS  Google Scholar 

  35. Liao JK, Takemoto M, Node K, et al. Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. J Clin Invest. 2001;108:1429–37.

    PubMed  Google Scholar 

  36. Brown JH, Del Re DP, Sussman MA. The Rac and Rho hall of fame: a decade of hypertrophic signaling hits. Circulation. 2006;98:730–42.

    Article  CAS  Google Scholar 

  37. •• Sadoshima J, Kuroda J, Ago T, et al. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proceedings of the National Academy of Sciences of the United States of America. 2010;107:15565-15570. This study generated cardiac-specific Nox4 −/− mice and demonstrated that Nox4 generation of ROS is abolished in these mice following pressure overload. These Nox4 −/− mice also showed less cardiac hypertrophy, fibrosis, and cardiomyocyte apoptosis than wild-type mice.

    Article  PubMed  Google Scholar 

  38. •• Zhang M, Brewer AC, Schroder K, et al. NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proceedings of the National Academy of Sciences of the United States of America. 2010;107:18121-18126. This study contracted the role of Nox4 in heart failure. The authors demonstrated that Nox4 enhances angiongenesis because Nox4-null animals developed cardiac dysfunction and hypertrophy while Nox4-transgenic mice were protected from these cardiac dysfunctions.

    Article  PubMed  CAS  Google Scholar 

  39. Naik E, Dixit VM. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med. 2011;208:417–20.

    Article  PubMed  CAS  Google Scholar 

  40. Li Y, Huang T-T, Carlson EJ, et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet. 1995;11:376–81.

    Article  PubMed  CAS  Google Scholar 

  41. Nojiri H, Shimizu T, Funakoshi M, et al. Oxidative stress causes heart failure with impaired mitochondrial respiration. J Biol Chem. 2006;281:33789–801.

    Article  PubMed  CAS  Google Scholar 

  42. Reinartz M, Ding Z, Flogel U, et al. Nitrosative stress leads to protein glutathiolation, increased s-nitrosation, and up-regulation of peroxiredoxins in the heart. J Biol Chem. 2008;283:17440–9.

    Article  PubMed  CAS  Google Scholar 

  43. Ungvari Z, Gupte SA, Recchia FA, et al. Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Curr Vasc Pharmacol. 2005;3:221–9.

    Article  PubMed  CAS  Google Scholar 

  44. Pacher P, Schulz R, Liaudet L, et al. Nitrosative stress and pharmacological modulation of heart failure. Trends Pharmacol Sci. 2005;26:302–10.

    Article  PubMed  CAS  Google Scholar 

  45. Elahi MM, Naseem KM, Matata BM. Nitric oxide in blood. The nitrosative-oxidative disequilibrium hypothesis on the pathogenesis of cardiovascular disease. FEBS J. 2007;274:906–23.

    Article  PubMed  CAS  Google Scholar 

  46. Casadei B, Lim G, Venetucci L, Eisner DA. Does nitric oxide modulate cardiac ryanodine receptor function? Implications for excitation-contraction coupling. Cardiovasc Res. 2008;77:256–64.

    PubMed  Google Scholar 

  47. Eiserich JP, Baldus S, Brennan ML, et al. Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science. 2002;296:2391–4.

    Article  PubMed  CAS  Google Scholar 

  48. Abu-Soud HM, Hazen SL. Nitric oxide is a physiological substrate for mammalian peroxidases. J Biol Chem. 2000;275:37524–32.

    Article  PubMed  CAS  Google Scholar 

  49. Gladwin MT, Shiva S, Wang X, et al. Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nat Chem Biol. 2006;2:486–93.

    Article  PubMed  Google Scholar 

  50. Tang WH, Katz R, Brennan ML, et al. Usefulness of myeloperoxidase levels in healthy elderly subjects to predict risk of developing heart failure. Am J Cardiol. 2009;103:1269–74.

    Article  PubMed  CAS  Google Scholar 

  51. Mingorance C, Rodriguez-Rodriguez R, Justo ML, et al. Pharmacological effects and clinical applications of propionyl-L-carnitine. Nutr Rev. 2011;69:279–90.

    Article  PubMed  Google Scholar 

  52. Resveratrol in cardiovascular disease. Heart Failure Review. 2011.

  53. Nakamura R, Egashira K, Machida Y, et al. Probucol attenuates left ventricular dysfunction and remodeling in tachycardia-induced heart failure: roles of oxidative stress and inflammation. Circulation. 2002;106:362–7.

    Article  PubMed  CAS  Google Scholar 

  54. Kinugawa S, Tsutsui H, Hayashidani S, et al. Treatment with dimethylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice: role of oxidative stress. Circulation. 2000;87:392–8.

    CAS  Google Scholar 

  55. Hornig B, Arakawa N, Kohler C, Drexler H. Vitamin C improves endothelial function of conduit arteries in patients with chronic heart failure. Circulation. 1998;97:363–8.

    PubMed  CAS  Google Scholar 

  56. Enstrom JE, Kanim LE, Klein MA. Vitamin-C Intake and Mortality among a Sample of the United-States Population. Epidemiology. 1992;3:194–202.

    Article  PubMed  CAS  Google Scholar 

  57. Osganian SK, Stampfer MJ, Rimm E, et al. Vitamin C and risk of coronary heart disease in women. J Am Coll Cardiol. 2003;42:246–52.

    Article  PubMed  CAS  Google Scholar 

  58. Sesso HD, Buring JE, Christen WG, et al. Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians' Health Study II randomized controlled trial. JAMA. 2008;300:2123–33.

    Article  PubMed  CAS  Google Scholar 

  59. Yusuf S, Dagenais G, Pogue J, et al. Vitamin E supplementation and cardiovascular events in high-risk patients. The heart outcomes prevention evaluation study investigators. N Engl J Med. 2000;342:154–60.

    Article  PubMed  CAS  Google Scholar 

  60. Marchioli R, Levantesi G, Macchia A, et al. Vitamin E increases the risk of developing heart failure after myocardial infarction: Results from the GISSI-Prevenzione trial. J Cardiovasc Med. 2006;7:347–50.

    Article  Google Scholar 

  61. Thomson MJ, Frenneaux MP, Kaski JC. Antioxidant treatment for heart failure: friend or foe? QJM. 2009;102:305–10.

    Article  PubMed  CAS  Google Scholar 

  62. Brown BG, Crowley J. Is there any hope for vitamin E? JAMA. 2005;293:1387–90.

    Article  PubMed  CAS  Google Scholar 

  63. Engberding N, Spiekermann S, Schaefer A, et al. Allopurinol attenuates left ventricular remodeling and dysfunction after experimental myocardial infarction: a new action for an old drug? Circulation. 2004;110:2175–9.

    Article  PubMed  CAS  Google Scholar 

  64. Ellestad MH. Xanthine oxidase inhibitors the unappreciated treatment for heart failure. Cardiovasc Hematol Disord Drug Targets. 2007;7:291–4.

    Article  PubMed  CAS  Google Scholar 

  65. Hayashi K, Kimata H, Obata K, et al. Xanthine oxidase inhibition improves left ventricular dysfunction in dilated cardiomyopathic hamsters. J Card Fail. 2008;14:238–44.

    Article  PubMed  CAS  Google Scholar 

  66. •• Hare JM, Mangal B, Brown J, et al. Impact of oxypurinol in patients with symptomatic heart failure. Results of the OPT-CHF study. Journal of the American College of Cardiology 2008;51:2301-2309. This is an important study that evaluates the efficacy of XO inhibition with oxypurinol in patiehts with moderate-to-severe heart faiulre. The authors noted that a specific population of heart failure patients, specifically the ones that had higher levels of serum uric acid, may benefit from XO inhibition. This study supports the need for stratified medicine in the management of heart failure.

    Article  PubMed  CAS  Google Scholar 

  67. Nasr G, Maurice C. Allopurinol and global left myocardial function in heart failure patients. J Cardiovasc Dis Res. 2010;1:191–5.

    Article  PubMed  Google Scholar 

  68. Calder PC. Polyunsaturated fatty acids and inflammatory processes: new twists in an old tale. Biochimie. 2009;91:791–5.

    Article  PubMed  CAS  Google Scholar 

  69. Witte KK, Clark AL. Marine polyunsaturated fatty acids in heart failure. Are the theoretical benefits matched by the clinical data? Polskie Archiwum Medycyny Wewnetrznej. 2009;119:162–9.

    PubMed  CAS  Google Scholar 

  70. Lavie CJ, Milani RV, Mehra MR, Ventura HO. Omega-3 polyunsaturated fatty acids and cardiovascular diseases. J Am Coll Cardiol. 2009;54:585–94.

    Article  PubMed  CAS  Google Scholar 

  71. Tang WH, Samara MA. Polyunsaturated fatty acids in heart failure: should we give more and give earlier? J Am Coll Cardiol. 2011;57:880–3.

    Article  PubMed  CAS  Google Scholar 

  72. Tavazzi L, Maggioni AP, Marchioli R, et al. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372:1223–30.

    Article  PubMed  Google Scholar 

  73. Nodari S, Triggiani M, Campia U, et al. Effects of n-3 polyunsaturated fatty acids on left ventricular function and functional capacity in patients with dilated cardiomyopathy. J Am Coll Cardiol. 2011;57:870–9.

    Article  PubMed  CAS  Google Scholar 

  74. Moertl D, Hammer A, Steiner S, et al. Dose-dependent effects of omega-3-polyunsaturated fatty acids on systolic left ventricular function, endothelial function, and markers of inflammation in chronic heart failure of nonischemic origin: a double-blind, placebo-controlled, 3-arm study. Am Heart J. 2011;16:915.e1–9.

    Article  PubMed  CAS  Google Scholar 

  75. Lipinski MJ, Cauthen CA, Biondi-Zoccai GG, et al. Meta-analysis of randomized controlled trials of statins versus placebo in patients with heart failure. Am J Cardiol. 2009;104:1708–16.

    Article  PubMed  CAS  Google Scholar 

  76. Dai D-F, Chen T, Szeto H, et al. Mitochondrial targeted antioxidant Peptide ameliorates hypertensive cardiomyopathy. J Am Coll Cardiol. 2011;58:73–82.

    Article  PubMed  CAS  Google Scholar 

  77. Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and mitochondrial DNA damage in heart failure. Circ J. 2008;72:31–7.

    Article  Google Scholar 

  78. Shiomi T, Tsutsui H, Matsusaka H, et al. Overexpression of glutathione peroxidase prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation. 2004;109:544–9.

    Article  PubMed  CAS  Google Scholar 

  79. Dai DF, Johnson SC, Villarin JJ, et al. Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circulation. 2011;108:837–46.

    Article  CAS  Google Scholar 

  80. Tang WH, Wu Y, Mann S, et al. Diminished antioxidant activity of high-density lipoprotein-associated proteins in systolic heart failure. Circulation: Heart failure. 2011;4:59–64.

    Article  CAS  Google Scholar 

  81. Costa LG, Giordano G, Furlong CE. Pharmacological and dietary modulators of paraoxonase 1 (PON1) activity and expression: the hunt goes on. Biochem Pharmacol. 2011;81:337–44.

    Article  PubMed  CAS  Google Scholar 

  82. Tang WH. The ongoing search for a stratified medicine approach in heart failure. J Am Coll Cardiol. 2008;51:2310–2.

    Article  PubMed  Google Scholar 

  83. Trusheim MR, Berndt ER, Douglas FL. Stratified medicine: strategic and economic implications of combining drugs and clinical biomarkers. Nat Rev Drug Discov. 2007;6:287–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Wilson Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, Z., Tang, W.H.W. Pharmacologic Strategies to Target Oxidative Stress in Heart Failure. Curr Heart Fail Rep 9, 14–22 (2012). https://doi.org/10.1007/s11897-011-0081-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-011-0081-5

Keywords

Navigation