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Abstract
Purpose of Review Fibroblast growth factor 23 (FGF23) is a key phosphate-regulating hormone that has been associated with
adverse outcomes in patients with chronic kidney disease (CKD). Emerging data suggest that FGF23 plays a specific role in type
2 diabetes, partly independent of kidney function. We aimed to summarize current literature on the associations between FGF23
and outcomes in patients with type 2 diabetes with or without CKD.
Recent Findings Several cohort studies have shown strong associations between plasma FGF23 and cardiovascular outcomes in
diabetic CKD.Moreover, recent data suggest that FGF23 are elevated and may also be a risk factor for cardiovascular disease and
mortality in type 2 diabetes patients without CKD, although the magnitude of the association is smaller than in CKD patients.
Summary Diabetes-related factors may influence plasma FGF23 levels, and a higher FGF23 levels seem to contribute to a higher
cardiovascular and mortality risk in patients with type 2 diabetes. Although this risk may be relevant in diabetic individuals with
preserved kidney function, it is strongly accentuated in diabetic nephropathy. Future studies should clarify if FGF23 is merely a
disease severity marker or a contributor to adverse outcomes in type 2 diabetes and establish if antidiabetic medication can
modify FGF23 levels.
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Introduction

Fibroblast growth factor 23 (FGF23) is a circulating hormone,
predominantly produced by osteocytes, that regulates

phosphate excretion by the kidneys and inhibits the synthesis
of 1,25-dihydroxyvitamin-D3 [1•]. Initial studies found that
deregulations in FGF23 play an important role in the devel-
opment of bone and mineral disorders. Over 20 years ago,
genetic mutations in the FGF23 gene were identified as the
cause of autosomal dominant hypophosphatemic rickets
(ADHR) [2]. Deregulated FGF23 also plays a role in the eti-
ology of X-linked hypophosphatemic rickets (XLH), another
bone disease where renal phosphate wasting plays a main role.
Subsequently, novel therapies have been developed including
the monoclonal antibody burosumab, which specifically tar-
gets FGF23. Clinical trials have now shown that burosumab
restores phosphate metabolism, improves growth, and reduces
pain in children with XLH [3]; it also seems to improve oste-
omalacia and skeletal complications in adults [4].

Since promoting renal phosphate excretion is among the
main functions of FGF23, and since abnormalities in
calcium-phosphate homeostasis are prominent in patients with
chronic kidney disease (CKD), it seems plausible that FGF23
is involved in deregulated phosphate homeostasis in these
patients. Indeed, many studies over the past years, including
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studies in patients with diabetic nephropathy, have shown that
FGF23 levels are increased in CKD patients, most likely in
response to a reduced renal capacity to excrete phosphate. In
line, after successful kidney transplantation, FGF23 levels de-
cline and transplanted patients may even develop transient
hypophosphatemia [5, 6]. Moreover, deregulated FGF23
levels seem to have impact beyond bone disease, as high
FGF23 levels have also consistently been associated with a
higher risk of cardiovascular and all-cause mortality.

Patients with diabetic nephropathy may display a specific
pattern of bone andmineral disturbances, including earlier and
more severe increases in FGF23 levels. More recently, emerg-
ing data suggested that FGF23 levels may be specifically ele-
vated in patients with type 2 diabetes and be associated with
adverse outcomes irrespective of kidney function.

In this review, wewill summarize the literature on potential
factors driving FGF23 deregulation in diabetes. Subsequently,
we address the known associations between FGF23 and out-
comes in patients with type 2 diabetes who have either pre-
served or impaired kidney function.

Elevated FGF23 Levels in Diabetes

Already in the 1980s, it was shown that patients with diabetic
nephropathy have a lower bone mass than non-diabetic CKD
patients and that circulating parathyroid hormone (PTH)
levels are relatively low [7, 8]. Also, it has been long known
that patients with type 2 diabetes are more prone to fractures
and have a higher bone mineral density and an abnormal bone
formation rate comparedwith non-diabetic patients [9–12]. To
expand on this, it seems that diabetic patients who have mi-
crovascular complications have more severe bone abnormali-
ties compared with patients without microvascular complica-
tions, suggesting that microangiopathy might cause bone ab-
normalities in patients with diabetes [13•]. Furthermore, dia-
betes may also interfere with bone and mineral metabolism.
Recent studies have provided a more detailed overview of the
spectrum of bone and mineral abnormalities in diabetic ne-
phropathy, including data on FGF23 (Table 1). Initial studies
were already suggestive of deregulated FGF23 levels in dia-
betes, compared with non-diabetic controls, but the limited
sample size and heterogeneity of these studies could have
confounded the results [17, 18]. From a large analysis of the
Chronic Renal Insufficiency Cohort (CRIC) study,Wahl et al.
concluded that the presence of co-existing diabetes was inde-
pendently associated with higher levels of serum phosphate,
PTH, and FGF23 [14••]. Moreover, FGF23 excess was more
prevalent earlier in the course of CKD among those with dia-
betes versus those without diabetes [14••]. The higher FGF23
levels in diabetic nephropathy may at least partly explain the
previously observed association between diabetes and lower
1,25(OH)2-vitamin D levels [19]. Túñon et al. found similar

FGF23 levels in diabetic vs. non-diabetic patients; this could
be explained by the fact that these patients had better kidney
function as compared with the CRIC study [15•]. On the other
hand, a smaller cohort of prediabetic individuals with normal
kidney function displayed significantly higher intact FGF23
levels than obese controls with normal glucose tolerance [16].
In a previous study, we assessed FGF23 in a general popula-
tion cohort, which also included type 2 diabetes patients
[20••]. Here, we specifically analyzed type 2 diabetes patients
with an estimated glomerular filtration rate (eGFR) > 60 ml/
min/1.73m2 and matched these patients with individuals with-
out diabetes using propensity score matching analysis
(Table 2). After matching, FGF23 levels remained higher in
patients with type 2 diabetes than in patients without diabetes
(75.6 [IQR 61.3–91.8] vs. 70.8 [IQR 58.0–85.8] RU/mL, re-
spectively, P < 0.001). While the conditions that determine
FGF23 levels in patients with diabetes and preserved kidney
function are not entirely clear, there seems to be interaction
between diabetes and kidney function, with the highest
FGF23 levels present in patients with both diabetes and im-
paired kidney function.

Potential Pathways Driving FGF23 in Diabetes

Several factors may contribute to deregulated FGF23 in pa-
tients with diabetes (Fig. 1). First, patients with diabetic ne-
phropathy seem to have higher serum phosphate levels than
matched controls without diabetes [14, 17]. Consequently,
FGF23 levels may be elevated in order to keep phosphate
balance by stimulating renal phosphate excretion. Second, a
recent series of elegant experiments identified glycerol-3-
phosphate (G3P), a metabolite involved in glycolysis, as a
major FGF23 regulator in the setting of acute kidney injury
[21••]. Diabetes is characterized by impaired mitochondrial
functioning and dysregulated G3P metabolism [22, 23].
Thus, although the initial discovery linking G3P with
FGF23 production was in acute kidney injury, this concept
also provides an hypothetical link between dysregulated
G3P metabolism and FGF23 levels in patients with diabetes.
Third, decreased bone formation rates as observed in patients
with diabetes could be a stimulus for FGF23 secretion [24].
Fourth, oral glucose loading seems to lower FGF23 levels
independent of insulin in patients with an impaired glucose
tolerance; whether this is a direct effect of glucose on bone
remains to be established [25]. Fifth, patients with diabetes are
more prone to develop early tubular injury, prior to a measur-
able decrease in kidney function or albuminuria [26]. Since
FGF23 target tubular epithelial cells to promote phosphaturia,
early tubular dysfunction could at least partly contribute to
higher FGF23 levels in diabetes [14••]. Sixth, high levels of
glucose could lead to formation of advanced glycation end
products (AGEs) [27]. It has been suggested that AGEs could
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induce a higher FGF23 levels [28]. Seventh, inflammation is a
major trigger of FGF23 production [29], and most patients
with type 2 diabetes, especially those with obesity, are in a
pro-inflammatory state [30]. Eighth, a recent study found that
insulin and insulin-like growth factor are strong suppressors of
FGF23 in animals and humans [31]. This may explain high
FGF23 levels in type 1 diabetes, whereas in type 2 diabetes
hyperinsulinaemia may be expected to lead to lower FGF23
levels. Possibly, in type 2 diabetes, the aforementioned pro-
inflammatory state may overrule the suppressive effect of
hyperinsulinaemia, ultimately leading to higher FGF23 levels
overall.

Elevated FGF23 levels may, in turn, also influence
glucose homeostasis. In mice, knockout of the FGF23
gene results in a specific phenotype characterized by,
among others, hypoglycemia and increased peripheral in-
sulin sensitivity [1, 32]. Less is known on the effects of
FGF23 on glucose metabolism in humans. A number of
smaller studies suggest an inverse correlation between
FGF23 levels and insulin sensitivity [33–36], which
would be in line with preclinical data. FGF23 is positively
associated with resistin, an adipokine, and regulator of
insulin resistance, irrespective of kidney function [36,
37]; it should be further addressed whether this

Table 2 Patient characteristics before and after propensity score matching between diabetes patients and non-diabetic controls in the PREVEND study

Type 2 DM
(n = 288)

Non-diabetic controls
(n = 5352)

P* SMD† Controls after matching
(n = 288)

SMD

C-terminal FGF23, (RU/mL) 75.6 (61.3–91.8) 67.9 (55.9–85.0) < 0.001 0.12 70.8 (58.0–85.8)§ 0.16

Age, (yrs)‡ 62 ± 10 52 ± 11 < 0.001 0.95 61.7 ± 10.8 0.001

Men, n (%)‡ 144 (50) 2462 (46) 0.10 0.08 150 (52) 0.04

BMI, (kg/m2) ‡ 29.4 (26.4–32.5) 25.8 (23.5–28.7) < 0.001 0.79 29.0 (26.3–32.9) 0.02

Systolic blood pressure, (mmHg) 137 ± 20 124 ± 18 < 0.001 0.68 138 ± 21 0.03

Diastolic blood pressure, (mmHg) 76 ± 9 73 ± 9 < 0.001 0.38 77 ± 9 0.04

eGFR (CKD-EPI),
(mL/min/1.73m2)‡

85.4 (74.3–98.2) 93.8 (80.7–108.4) < 0.001 0.44 85.6 (74.8–97.0) 0.04

Plasma phosphate, (mmol/L)‡ 1.02 ± 0.2 1.02 ± 0.3 0.62 0.03 1.04 ± 0.5 0.07

Plasma PTH, (pmol/L) 5.0 (4.2–5.9) 4.9 (4.1–5.8) 0.13 0.08 5.2 (4.1–6.1) 0.03

Plasma vitamin D3, (nmol/L)‡ 45.5 (33.4–62.5) 53.6 (38.3–72.3) < 0.001 0.33 47.4 (34.3–63.6) 0.04

Urinary P excretion, (mmol/24 h)‡ 15 (10–21) 15 (10–22) 0.23 0.07 14 (10–22) 0.03

Propensity score-based matching (1:1) with all covariates displayed in the table

*P value represents differences between the groups before matching assessed by student’s t test or Mann–Whitney U test for nominal and non-normally
distributed data, respectively. Chi-squared test was used for categorical variables

† The standardized mean difference (SMD) compares the difference in the mean in units of the standard deviation of both groups. SMD <0.1 after
matching represents a negligible difference of the covariate between the groups

§ P< 0.001 between the groups after propensity score matching using Mann–Whitney U test

Abbreviations: SMD standardized mean difference, FGF23 fibroblast growth factor 23; eGFR estimated glomerular filtration rate, HS CRP high
sensitive C-reactive protein, PTH parathyroid hormone, vitamin D3, 25-OH, 25-hydroxycholecalciferol, P phosphate, ACR albumin-to-creatinine ratio

Table 1 Overview of studies comparing FGF23 levels in (pre-)diabetes patient with controls

Author N Age (years) eGFR (ml/min/1.73m2) FGF23 assay FGF23 level

Wahl et al. [14••]

Type 2 diabetes patients 1820 59.5 ± 9.8 40.7 ± 12.8 C-terminal 172.4 (114.3–277.2) RU/mL*

Non-diabetic controls 1936 57.0 ± 11.9 44.7 ± 13.8 C-terminal 121.9 (84.0–198.8) RU/mL

Tuñón et al. [15•]

Type 2 diabetes patients 173 62.8 73.8 ± 20.8 C-terminal 72.2 (56.7–104.9) RU/mL

Non-diabetic controls 531 61.0 76.5 ± 18.0 C-terminal 69.9 (54.4–93.7) RU/mL

Gateva et al. [16]

Prediabetes patients 39 50.3 ± 11.5 124.5 ± 39.8 Intact 10.4 ± 10.7 pg/mL*

Non-diabetic obese 41 50.6 ± 9.7 125.2 ± 35.6 Intact 5.8 ± 7.3 pg/mL

*P < 0.05 vs controlsAbbreviations: eGFR estimated glomerular filtration rate, cFGF23 C-terminal fibroblast growth factor-23
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relationship is key to FGF23-induced insulin resistance.
Even though the underlying mechanisms are not entirely
clear, emerging data indicate that a higher FGF23 level
may influence clinical outcomes.

FGF23 in Chronic Kidney Disease

Although the main focus of this review is on FGF23 in
diabetes, most data on the association between FGF23 and
clinical outcomes are available in patients with CKD. A
landmark study published in 2008 showed that FGF23
levels were independently associated with a higher mor-
tality risk in end-stage kidney disease patients requiring
hemodialysis [38]. A wide range of subsequent cohort
studies consistently showed that worsening kidney func-
tion is accompanied by gradually higher FGF23 levels
[39] and that an elevated circulating FGF23 level is asso-
ciated with a higher mortality risk across stages of CKD
[38, 40••] and in kidney transplant recipients [41–43].
Particularly, CKD patients with a rapidly increasing
FGF23 level seem to have a higher mortality risk [44].
At least part of the excess mortality seems to be

attributable to cardiovascular disease [42] and, more spe-
cifically, FGF23 has been linked with a higher risk of
(progressive) heart failure [45, 46]. FGF23 has also been
associated with a higher risk of kidney function decline in
patients with CKD [40••] and with an increased risk of
developing CKD in the general population [47••].
Although it remains unclear whether FGF23 or its recep-
tor may be causal factors that promote kidney damage or
impair renoprotective therapy [48, 49], emerging data in-
dicate that FGF23 can have detrimental off-target effects
on the heart. A meta-analysis observed that in different
CKD stages FGF23 is indeed associated with cardiovas-
cular outcomes and mortality, but it was also associated
with non-cardiovascular outcomes. This indicates that it
may not only have an effect on cardiovascular system, but
also on other organ systems [50•].

FGF23 and Outcomes in Diabetes

As outlined above, in patients with CKD, there seems to be a
rather consistent association between FGF23 levels and ad-
verse outcomes across CKD stages, while absolute FGF23

Deregulated
FGF23 in diabetes

Elevated
phosphate level

Decreased bone 
forma�on rate 

Oral glucose 
loading 

Early tubular 
injury

Forma�on 
of AGEs

Inflamma�on

Insulin

Increased 
glycerol-3-phosphate

Fig. 1 Overview of factors that may contribute to deregulation of FGF23 in diabetes. Factors that may increase FGF23 levels are indicated with green
arrows, while factors that may reduce FGF23 levels are indicated with red arrows

50    Page 4 of 9 Curr Diab Rep (2020) 20: 50



levels are much higher with more advanced CKD stages.
Similarly, these associations appear independent of the prima-
ry kidney disease. Several studies have demonstrated that in
patients with type 2 diabetes, a higher circulating FGF23 level
is associated with an increased risk of all-cause mortality and
cardiovascular mortality (Table 3). We also analyzed cardio-
vascular events as a separate outcome and found that a higher
FGF23 level is also associated with a higher risk of cardiovas-
cular events (cardiovascular mortality, unstable angina
pectoris, myocardial infarction, transient ischemic attack, ce-
rebrovascular diseases (cerebral infarction or hemorrhage), or
heart failure) [20••].

Interestingly, the association between FGF23 and ad-
verse outcomes in diabetes seems to extend beyond pa-
tients with impaired kidney function, as the majority of
patients in some of the studies summarized in Table 3 had
an eGFR > 60 mL/min/1.73 m2, and in two studies, the
average eGFR was even > 90 mL/min/1.73 m2 [53, 54].
This is in line with a specific role for FGF23 in patients
with type 2 diabetes, even in patients with preserved or
mildly impaired kidney function.

Potential Mechanisms Linking High FGF23
Levels with Outcomes

FGF23 was observed to be associated with different out-
comes, which has led to studies investigating the conse-
quences of excess FGF23 levels. The primary targets of
FGF23 in the kidney are NaPi2a/c sodium/phosphate co-
transporters, via signaling through the FGF receptor 1
(FGFR1) in conjunction with the canonical co-receptor α-
klotho. Given its prominent role as a regulator of phosphate
homeostasis, FGF23 may contribute to cardiovascular disease
through deregulation of phosphate balance, promoting vascu-
lar calcification through increased phosphate deposition in the

vascular wall. Some [55], but not all [56, 57] studies have
linked a higher FGF23 level with vascular calcification.
Furthermore, phosphaturia induced by FGF23 may lead to
interstitial inflammation, fibrosis, and tubular damage [58].
Although vascular calcification is a prominent feature of car-
diovascular disease in diabetes, particularly with co-existing
CKD, it does not seem to be the only pathway linking FGF23
with adverse outcomes.

In addition to the regulation of phosphate reabsorption, a
higher FGF23 level may also increase renal sodium uptake,
leading to volume expansion and hypertension [59–61].
Although these data are not entirely consistent, it may at least
partly explain the role of FGF23 in cardiovascular disease as
observed in epidemiological studies. Additionally, so-called
“off-target” FGF23 signaling routes in different cell types
have been identified; for the cardiovascular effects of FGF23
the most relevant off-target signaling pathway seems to be
through FGFR4. FGF23 can bind and activate FGFR4 in the
heart, independently of α-klotho [62], promoting left ventric-
ular hypertrophy [63, 64]. Importantly, from preclinical stud-
ies, it seems that pharmacological interference with a specific
FGFR4 inhibitor might protect from CKD- and age-related
left ventricular hypertrophy [65], opening up novel avenues
for intervention aiming to lower the massively elevated car-
diovascular risk in CKD. This is particularly relevant since
more conventional efforts to lower FGF23, using a
phosphate-restricted diet and phosphate binders, have been
barely successful [66].

Also worth mentioning is that FGF23 might have an inter-
action with asymmetric dimethylarginine (ADMA), as it is
suggested that both can interfere with the nitric oxide system
leading to endothelial dysfunction and atherosclerosis which
is associated with CKD progression [67]. High FGF23 levels
may also influence α-Klotho [68] and as animal studies have
shown that a reduction of renal Klotho may result in kidney
damage through pro-fibrotic signaling pathways, including

Table 3 Studies assessing the relationship of FGF23 with outcomes in patients with type 2 diabetes

Author N Follow-up (years) Age (years) eGFR (ml/min/1.73 m2) FGF23 (RU/mL) Outcome: hazard ratio (95% CI)#

Silva et al. [51] 107 2.8 ± 0.7 57.2 ± 7.1 52.89 ± 20.15 135.0 ± 135.2 CV mortality: 2.05 (1.01–8.25)

Titan et al. [52] 55 2.6 ± 0.8 58.4 ± 10.0 53.0 ± 20.6 92.0 ± 42.9 Composite endpoint1: 1.09 (1.01–1.16)

Tuñón et al. [15•] 173 2.15 ± 0.99 62.8 73.75 ± 20.84 72.2 (56.7–104.9) Composite endpoint2: 1.27 (1.13–1.43)

Yeung et al. [20••] 310 5.8 (3.3–6.5) 61.5 ± 8.7 88.5 ± 14.8 84.2 (67.0–117.6) All-cause mortality: 2.55 (1.58–4.10)
MACE: 1.68 (1.08–2.61)

Frimodt et al. [53] 200 6.1 (5.9–6.6) 59.9 ± 9 91.1 ± 18.3 71 (52–108) All-cause mortality: 1.57 (1.11–2.18)

Chan et al. [54] 513 6.6 (5.8–7.5) 55.0 (49.0–62.0) 91.3 (76.4–111.3) 112.4 (79.0–165.8) All-cause mortality: 1.74 (1.44–2.09)

1 Composite endpoint of all-cause mortality, doubling of serum creatinine or requirement for dialysis
2 Composite endpoint of acute ischemic events (acute coronary syndrome, stroke or transient ischemic attack), heart failure or death
#Adjusted for potential confounders

Abbreviations: eGFR estimated glomerular filtration rate, FGF23 fibroblast growth factor 23, CI confidence interval, CV cardiovascular,MACEmajor
adverse cardiac event
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transforming growth factor β1 and Wnt/β-catenin signaling
[69, 70].

FGF23-Reducing Strategies

In the literature, many FGF23-reducing strategies have been
extensively studied. Initial studies focused on strategies that
lower serum phosphate levels by restricting dietary phosphate
intake [71, 72] and/or using phosphate binders [73]. However,
discrepant results were observed, as some studies reported no
effect on FGF levels of dietary phosphate restriction [74, 75]
and/or phosphate binders, alone or in combination with nico-
tinamide [76, 77]. Therefore, the effectiveness of these strate-
gies remain uncertain. Other approaches include the use of
monoclonal antibodies against FGF23 like burosumab.
However, in a preclinical study FGF23monoclonal antibodies
applied in a rat model of CKD-mineral and bone disorder led
to normalization of bone and mineral markers but increased
aortic calcification and mortality, probably due to an incapac-
ity to excrete phosphate, which was already impaired due to
the CKD background [78]. Based on these data, it seems un-
likely that isolated anti-FGF23 therapy is beneficial in the
context of impaired kidney function. The same results were
found using a pan-FGFR inhibitor showing that FGF23 is an
important phosphate-regulating hormone [79]. Some studies
have found that calcimimetics are a viable option to reduce
FGF23 levels [80, 81]; however data have so far been limited
to patients with end-stage kidney disease. Although theoreti-
cally cross-talk between the renin-angiotensin system and
FGF23 may lead to changes in FGF23 levels in response to
angiotensin-converting enzyme inhibitor (ACEi) or angioten-
sin receptor blocker (ARB) treatment, so far no studies have
demonstrated this convincingly to our knowledge [82].
Interventions aiming to optimize renin-angiogensin-aldostero
system (RAAS)-blockade efficacy, such as low-sodium diet
or the addition of a thiazide diuretic, may not affect FGF23
levels in diabetic nephropathy [61].

The aforementioned strategies were mostly performed on
CKD patients, and thus these strategies have yet to be studied
specifically in patients with type 2 diabetes. It is of interest
whether antidiabetic medication may influence FGF23 levels
in diabetic nephropathy. We recently demonstrated that treat-
ment of diabetic nephropathy patients with the sodium-
glucose cotransporter inhibitor (SGLT2i) dapaglifozin led to
small but significant increases in serum phosphate, plasma
PTH, and FGF23, independent of concomitant changes in
eGFR or 24-h albumin excretion [83••]. A potential mecha-
nismmay be that since phosphate and glucose transporters use
the same sodium gradient, these transporters may limit each
other [84]. Because SGLT2 inhibitors prevent the cotransport
and reabsorption of sodium and glucose, the sodium gradient
is preserved for the sodium-dependent phosphate transport

proteins NaPi-2a and NaPi-2c, stimulating tubular phosphate
reabsorption [85]. Despite these small effects on mineral me-
tabolism, SGLT2 inhibitors have shown clinically relevant
cardiovascular and renal protective effects in diabetic ne-
phropathy, without convincing adverse effects on the bone
[85•]. As mentioned before, insulin seems capable to reduce
FGF23 levels in human and mice [31]; the clinical value of
this observation should be further addressed. Overall, future
studies should evaluate the value of antidiabetic medication in
reducing FGF23, to further clarify the role of FGF23 in pa-
tients with diabetes.

Conclusions

The current literature indicates that patients with type 2 dia-
betes, and particularly those with impaired kidney function,
generally have an increased FGF23 level compared with indi-
viduals without diabetes. This is most likely the consequence
of a complex interplay of several deregulated pathways that
co-occur in diabetic nephropathy. Importantly, although the
underlying pathways have not been fully clarified, a higher
FGF23 level has been strongly and consistently linked with a
higher risk of (cardiovascular) morbidity and mortality.
Interestingly, these associations have been observed in pa-
tients with reduced and preserved kidney function, highlight-
ing the prominence of FGF23 as a risk factor in patients with
diabetes.

The next question is whether FGF23 plays a causal role in
these adverse outcomes or whether it is rather an indicator of
an underlying dismal process such as inflammation. In order
to address this question in detail, interventions specifically
targeting FGF23 need to be studied in diabetic animals and
patients with preserved kidney function as many possible ther-
apeutic interventions was applied in the context of impaired
kidney function. It may be interesting to study whether such
therapy could benefit individuals with diabetes and preserved
kidney function, possibly in combination with reduced phos-
phate intake. Future studies are clearly needed to further ad-
vance this field and better understand the deregulations in
phosphate metabolism, including FGF23, in patients with
diabetes.
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