Skip to main content

Advertisement

Log in

The Emerging Role of Biomarkers in Diabetic and Hypertensive Chronic Kidney Disease

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Currently used measures to assess kidney function and injury are largely inadequate. Markers such as serum creatinine, formulas to estimate glomerular filtration rate, cystatin C, and proteinuria largely identify an underlying disease process that is well established. Thus, there has been a recent effort to identify new biomarkers that reflect kidney function, early injury, and/or repair that ultimately can relate to progression or regression of damage. Several biomarkers emerged recently that are able to detect kidney damage earlier than is currently possible with traditional biomarkers such as serum creatinine and proteinuria. Identification of urine biomarkers has proven to be beneficial in recent years because of ease of handling, stability, and the ability to standardize the various markers to creatinine or other peptides generally already present in the urine. Recent markers such as neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), and podocin have garnered a lot of attention. The emergence of these and other biomarkers is largely because of the evolution of novel genomic and proteomic applications in investigations of acute kidney injury and chronic kidney disease. In this article, we focus on the applications of these biomarkers in disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Adler S: Diabetic nephropathy: linking histology, cell biology, and genetics. Kidney Int 2004, 66:2095-2106.

    Article  PubMed  Google Scholar 

  2. Thongboonkerd V, Malasit P: Renal and urinary proteomics: current applications and challenges. Proteomics 2005, 5:1033–1042.

    Article  CAS  PubMed  Google Scholar 

  3. US Renal Data System: Annual Report of the US Renal Data System 2007. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2007.

  4. Coresh J, Selvin E, Stevens LA, et al.: Prevalence of chronic kidney disease in the United States JAMA 2007, 298:2038–2047.

    Article  CAS  PubMed  Google Scholar 

  5. Bosch JP: Renal reserve: a functional view of glomerular filtration rate. Semin Nephrol 1995, 15:381–385.

    CAS  PubMed  Google Scholar 

  6. Herrera J, Rodríguez-Iturbe B: Stimulation of tubular secretion of creatinine in health and in conditions associated with reduced nephron mass. Evidence for a tubular functional reserve. Nephrol Dial Transplant 1998, 13:623–629.

    Article  CAS  PubMed  Google Scholar 

  7. Kanwar YS, Liu ZZ, Kashihara N, Wallner EI: Current status of the structural and functional basis of glomerular filtration and proteinuria. Semin Nephrol 1991, 11:390–413.

    CAS  PubMed  Google Scholar 

  8. Guasch A, Deen WM, Myers BD: Charge selectivity of the glomerular filtration barrier in healthy and nephrotic humans. J Clin Invest 1993, 92:2274–2282.

    Article  CAS  PubMed  Google Scholar 

  9. Peterson JC, Adler S, Burkart JM, et al.: Blood pressure control, proteinuria, and the progression of renal disease. The Modification of Diet in Renal Disease Study. Ann Intern Med 1995, 123:754–762.

    CAS  PubMed  Google Scholar 

  10. Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia) [no authors listed]. Lancet 1997, 349:1857–1863.

  11. Remuzzi G, Ruggenenti P, Benigni A: Understanding the nature of renal disease progression. Kidney Int 1997, 51:2–15.

    Article  CAS  PubMed  Google Scholar 

  12. Wright JT Jr, Bakris G, Greene T, et al.: Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. African American Study of Kidney Disease and Hypertension Study Group. JAMA 2002, 288:2421–2431.

    Article  CAS  PubMed  Google Scholar 

  13. Rossing P: The changing epidemiology of diabetic microangiopathy in type I diabetes. Diabetologia 2005, 48:1439–1444.

    Article  CAS  PubMed  Google Scholar 

  14. Toto RD: Microalbuminuria: definition, detection, and clinical significance. J Clin Hypertens (Greenwich) 2004, 6(11 Suppl 3):2–7.

    Article  CAS  Google Scholar 

  15. Bank N: Mechanisms of diabetic hyperfiltration. Kidney Int 1991, 40:792–807.

    Article  CAS  PubMed  Google Scholar 

  16. Ding G, Reddy K, Kapasi AA, et al.: Angiotensin II induces apoptosis in rat glomerular epithelial cells. Am J Physiol Renal Physiol 2002, 283:F173–F180.

    CAS  PubMed  Google Scholar 

  17. Pagtalunan ME, Miller PL, Jumping-Eagle S, et al.: Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest 1997, 99:342–348.

    Article  CAS  PubMed  Google Scholar 

  18. Meyer TW, Bennett PH, Nelson RG: Podocyte number predicts long-term urinary albumin excretion in Pima Indians with type II diabetes and microalbuminuria. Diabetologia 1999, 42:1341–1344.

    Article  CAS  PubMed  Google Scholar 

  19. Mason RM, Wahab NA: Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol 2003, 14:1358–1373.

    Article  CAS  PubMed  Google Scholar 

  20. Eardley KS, Zehnder D, Quinkler M, et al.: The relationship between albuminuria, MCP-1/CCL2, and interstitial macrophages in chronic kidney disease. Kidney Int 2006, 69:1189–1197.

    Article  CAS  PubMed  Google Scholar 

  21. Ong AC, Fine LG: Loss of glomerular function and tubulointerstitial fibrosis: cause or effect? Kidney Int 1994, 45:345–351.

    Article  CAS  PubMed  Google Scholar 

  22. Nath KA: Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis 1992, 20:1–17.

    CAS  PubMed  Google Scholar 

  23. •• Crowley SD, Vasievich MP, Ruiz P, et al.: Glomerular type 1 angiotensin receptors augment kidney injury and inflammation in murine autoimmune nephritis. J Clin Invest 2009, 119:943–953. This is a seminal paper that outlined the importance of the kidney and the RAS in regulating blood pressure.

  24. Aros C, Remuzzi G: The renin-angiotensin system in progression, remission and regression of chronic nephropathies. J Hypertension Suppl 2002, 20:S45–S53.

    Article  CAS  Google Scholar 

  25. Schaub S, Wilkins J, Weiler T, et al.: Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. Kidney Int 2004, 65:323–332.

    Article  CAS  PubMed  Google Scholar 

  26. Vestergaard P, Leverett R: Constancy of urine creatinine excretion. J Lab Clin Med 1958, 51:211–218.

    CAS  PubMed  Google Scholar 

  27. Schiffer E, Mischak H, Novak J: High resolution proteome/peptidome analysis of body fluids by capillary electrophoresis coupled with MS. Proteomics 2006, 6:5615–5627.

    Article  CAS  PubMed  Google Scholar 

  28. Mori K, Lee HT, Rapoport D, et al.: Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest 2005, 115:610–621.

    CAS  PubMed  Google Scholar 

  29. Parikh CR, Jani A, Melnikov VY, et al.: Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis 2004, 43:405–414.

    Article  CAS  PubMed  Google Scholar 

  30. Nickolas TL, O’Rourke MJ, Yang J, et al.: Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury. Ann Intern Med 2008, 148:810–819.

    PubMed  Google Scholar 

  31. Miyauchi K, Takiyama Y, Honjyo J, et al.: Upregulated IL-18 expression in type 2 diabetic subjects with nephropathy: TGF-beta1 enhanced IL-18 expression in human renal proximal tubular epithelial cells. Diabetes Res Clin Pract 2009, 83:190–199.

    Article  CAS  PubMed  Google Scholar 

  32. Hall IE, Yarlagadda SG, Coca SG, et al.: IL-18 and urinary NGAL predict dialysis and graft recovery after kidney transplantation. J Am Soc Nephrol 2009 Sep 17 (Epub ahead of print).

  33. Malyszko J, Malyszko JS, Bachorzewska-Gajewska H, et al.: Neutrophil gelatinase-associated lipocalin is a new and sensitive marker of kidney function in chronic kidney disease patients and renal allograft recipients. Transplant Proc 2009, 41:158–161.

    Article  CAS  PubMed  Google Scholar 

  34. Bolignano D, Lacquaniti A, Coppolino G, et al.: Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol 2009, 4:337–344.

    Article  CAS  PubMed  Google Scholar 

  35. Mori K, Nakao K: Neutrophil gelatinase-associated lipocalin as the real-time indicator of active kidney damage. Kidney Int 2007, 71:967–970.

    Article  CAS  PubMed  Google Scholar 

  36. Ichimura T, Bonventre JV, Bailly V, et al.: Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is upregulated in renal cells after injury. J Biol Chem 1998, 273:4135–4142.

    Article  CAS  PubMed  Google Scholar 

  37. Han WK, Bailly V, Abichandani R, et al.: Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 2002, 62:237–244.

    Article  CAS  PubMed  Google Scholar 

  38. Waanders F, Vaidya VS, van Goor H, et al.: Effect of renin-angiotensin-aldosterone system inhibition, dietary sodium restriction, and/or diuretics on urinary kidney injury molecule 1 excretion in nondiabetic proteinuric kidney disease: a post hoc analysis of a randomized controlled trial. Am J Kidney Dis 2009, 53:16–25.

    Article  CAS  PubMed  Google Scholar 

  39. Merchant ML, Perkins BA, Boratyn GM, et al.: Urinary peptidome may predict renal function decline in type 1 diabetes and microalbuminuria. J Am Soc Nephrol 2009, 20:2065–2074.

    Article  CAS  PubMed  Google Scholar 

  40. Brehm MA, Schenk TM, Zhou X, et al.: Intracellular localization of human Ins(1,3,4,5,6)P5 2-kinase. Biochem J 2007, 408:335–345.

    Article  CAS  PubMed  Google Scholar 

  41. Kriz W, Gretz N, Lemley KV: Progression of glomerular diseases: is the podocyte the culprit? Kidney Int 1998, 54:687–697.

    Article  CAS  PubMed  Google Scholar 

  42. Kriz W: Podocyte is the major culprit accounting for the progression of chronic renal disease. Microsc Res Tech 2002, 57:189–195.

    Article  PubMed  Google Scholar 

  43. Hara M, Yanagihara T, Itoh M, et al.: Immunohistochemical and urinary markers of podocyte injury. Pediatr Nephrol 1998, 12:43–48.

    Article  CAS  PubMed  Google Scholar 

  44. Nakamura T, Ushiyama C, Suzuki S, et al.: Urinary excretion of podocytes in patients with diabetic nephropathy. Nephrol Dial Transplant 2000, 15:1379–1383.

    Article  CAS  PubMed  Google Scholar 

  45. Szeto CC, Lai KB, Chow KM, et al.: Messenger RNA expression of glomerular podocyte markers in the urinary sediment of acquired proteinuric diseases. Clin Chim Acta 2005, 361:182–190.

    Article  CAS  PubMed  Google Scholar 

  46. Sato Y, Wharram BL, Lee SK, et al.: Urine podocyte mRNAs mark progression of renal disease. J Am Soc Nephrol 2009, 20:1041–1052.

    Article  CAS  PubMed  Google Scholar 

  47. Yu D, Petermann A, Kunter U, et al.: Urinary podocyte loss is a more specific marker of ongoing glomerular damage than proteinuria. J Am Soc Nephrol 2005, 16:1733–1741.

    Article  CAS  PubMed  Google Scholar 

  48. Wang G, Lai FM, Kwan BC, et al.: Podocyte loss in human hypertensive nephrosclerosis. Am J Hypertens 2009, 22:300–306.

    Article  PubMed  Google Scholar 

  49. Szeto CC, Chan RW, Lai KB, et al.: Messenger RNA expression of target genes in the urinary sediment of patients with chronic kidney diseases. Nephrol Dial Transplant 2005, 20:105–113.

    Article  CAS  PubMed  Google Scholar 

  50. Zoccali C, Bode-Boger S, Mallamaci F, et al.: Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: a prospective study. Lancet 2001, 358:2113–2117.

    Article  CAS  PubMed  Google Scholar 

  51. Fliser D, Kronenberg F, Kielstein JT, et al.: Asymmetric dimethylarginine and progression of chronic kidney disease: the mild to moderate kidney disease study. J Am Soc Nephrol 2005, 16:2456–2461.

    Article  CAS  PubMed  Google Scholar 

  52. Nakamura K, Ito K, Kato Y, et al.: L-type fatty acid binding protein transgenic mouse as a novel tool to explore cytotoxicity to renal proximal tubules. Drug Metab Pharmacokinet 2008, 23:271–278.

    Article  CAS  PubMed  Google Scholar 

  53. Negishi K, Noiri E, Doi K, et al.: Monitoring of urinary L-type fatty acid-binding protein predicts histological severity of acute kidney injury. Am J Pathol 2009, 174:1154–1159.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Whaley-Connell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhary, K., Phadke, G., Nistala, R. et al. The Emerging Role of Biomarkers in Diabetic and Hypertensive Chronic Kidney Disease. Curr Diab Rep 10, 37–42 (2010). https://doi.org/10.1007/s11892-009-0080-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-009-0080-z

Keywords

Navigation