Skip to main content

Advertisement

Log in

Cath Lab Robotics: Paradigm Change in Interventional Cardiology?

  • New Therapies for Cardiovascular Disease (AA Bavry, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To review the contemporary evidence for robotic-assisted percutaneous coronary and vascular interventions, discussing its current capabilities, limitations, and potential future applications.

Recent Findings

Robotic-assisted cardiovascular interventions significantly reduce radiation exposure and orthopedic strains for interventionalists, while maintaining high rates of device and clinical success. The PRECISE and CORA-PCI studies demonstrated the safety and efficacy of robotic-assisted percutaneous coronary intervention (PCI) in increasingly complex coronary lesions. The RAPID study demonstrated similar findings in peripheral vascular interventions (PVI). Subsequent studies have demonstrated the safety and efficacy of second-generation devices, with automations mimicking manual PCI techniques. While innovations such as telestenting continue to bring excitement to the field, major limitations remain—particularly the lack of randomized trials comparing robotic-assisted PCI with manual PCI.

Summary

Robotic technology has successfully been applied to multiple cardiovascular procedures. There are limited data to evaluate outcomes with robotic-assisted PCI and other robotic-assisted cardiovascular procedures, but existing data show some promise of improving the precision of PCI while decreasing occupational hazards associated with radiation exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Autschbach R, Onnasch JF, Falk V, Walther T, Krüger M, Schilling LO, et al. The Leipzig experience with robotic valve surgery. J Card Surg. 2000;15(1):82–7.

    CAS  PubMed  Google Scholar 

  2. Bismuth J, Duran C, Stankovic M, Gersak B, Lumsden AB. A first-in-man study of the role of flexible robotics in overcoming navigation challenges in the iliofemoral arteries. J Vasc Surg. 2013;57(2 Suppl):14S–9S.

    PubMed  Google Scholar 

  3. Li MM, Hamady MS, Bicknell CD, Riga CV. Flexible robotic catheters in the visceral segment of the aorta: advantages and limitations. J Cardiovasc Surg. 2018;59(3):317–21.

    Google Scholar 

  4. Perera AH, Riga CV, Monzon L, Gibbs RG, Bicknell CD, Hamady M. Robotic arch catheter placement reduces cerebral embolization during thoracic endovascular aortic repair (TEVAR). Eur J Vasc Endovasc Surg. 2017;53(3):362–9.

    CAS  PubMed  Google Scholar 

  5. Pappone C, Vicedomini G, Manguso F, Gugliotta F, Mazzone P, Gulletta S, et al. Robotic magnetic navigation for atrial fibrillation ablation. J Am Coll Cardiol. 2006;47(7):1390–400.

    PubMed  Google Scholar 

  6. Rillig A, Meyerfeldt U, Birkemeyer R, Treusch F, Kunze M, Miljak T, et al. Remote robotic catheter ablation for atrial fibrillation: how fast is it learned and what benefits can be earned? J Interv Card Electrophysiol. 2010;29(2):109–17.

    PubMed  Google Scholar 

  7. Solomon SB, Patriciu A, Bohlman ME, Kavoussi LR, Stoianovici D. Robotically driven interventions: a method of using CT fluoroscopy without radiation exposure to the physician. Radiology. 2002;225(1):277–82.

    PubMed  PubMed Central  Google Scholar 

  8. Srivastava S, Barrera R, Quismundo S. One hundred sixty-four consecutive beating heart totally endoscopic coronary artery bypass cases without intraoperative conversion. Ann Thorac Surg. 2012;94(5):1463–8.

    PubMed  Google Scholar 

  9. Ullah W, McLean A, Hunter RJ, Baker V, Richmond L, Cantor EJ, et al. Randomized trial comparing robotic to manual ablation for atrial fibrillation. Heart Rhythm. 2014;11(11):1862–9.

    PubMed  Google Scholar 

  10. Gruntzig AR, Senning A, Siegenthaler WE. Nonoperative dilatation of coronary-artery stenosis: percutaneous transluminal coronary angioplasty. N Engl J Med. 1979;301(2):61–8.

    CAS  PubMed  Google Scholar 

  11. Beyar R, Gruberg L, Deleanu D, Roguin A, Almagor Y, Cohen S, et al. Remote-control percutaneous coronary interventions: concept, validation, and first-in-humans pilot clinical trial. J Am Coll Cardiol. 2006;47(2):296–300.

    PubMed  Google Scholar 

  12. Weisz G, Metzger DC, Caputo RP, Delgado JA, Marshall JJ, Vetrovec GW, et al. Safety and feasibility of robotic percutaneous coronary intervention: PRECISE (Percutaneous Robotically-Enhanced Coronary Intervention) study. J Am Coll Cardiol. 2013;61(15):1596–600.

    PubMed  Google Scholar 

  13. • Mahmud E, et al. Demonstration of the safety and feasibility of robotically assisted percutaneous coronary intervention in complex coronary lesions: results of the CORA-PCI study (Complex Robotically Assisted Percutaneous Coronary Intervention). JACC Cardiovasc Interv. 2017;10(13):1320–7 Findings of this study suggest robotic-assisted PCI is safe and feasible compared with manual PCI in treatment of complex coronary artery lesions.

    PubMed  Google Scholar 

  14. Smitson CC, Ang L, Pourdjabbar A, Reeves R, Patel M, Mahmud E. Safety and feasibility of a novel, second-generation robotic-assisted system for percutaneous coronary intervention: first-in-human report. J Invasive Cardiol. 2018;30(4):152–6.

    PubMed  Google Scholar 

  15. Granada JF, Delgado JA, Uribe MP, Fernandez A, Blanco G, Leon MB, et al. First-in-human evaluation of a novel robotic-assisted coronary angioplasty system. JACC Cardiovasc Interv. 2011;4(4):460–5.

    PubMed  Google Scholar 

  16. Al Nooryani A, Aboushokka W. Rotate-on-retract procedural automation for robotic-assisted percutaneous coronary intervention: first clinical experience. Case Rep Cardiol. 2018;2018:6086034.

    PubMed  PubMed Central  Google Scholar 

  17. Madder R, Lombardi W, Parikh M, Kandzari D, Grantham JA, Rao S. TCT-539 impact of a novel advanced robotic wiring algorithm on time to wire a coronary artery bifurcation in a porcine model. J Am Coll Cardiol. 2017;70(18 Supplement):B223.

    Google Scholar 

  18. Weisz G, Smilowitz NR, Metzger DC, Caputo R, Delgado J, Marshall JJ, et al. The association between experience and proficiency with robotic-enhanced coronary intervention-insights from the PRECISE multi-center study. Acute Card Care. 2014;16(2):37–40.

    PubMed  Google Scholar 

  19. Mahmud E, Schmid F, Kalmar P, Deutschmann H, Hafner F, Rief P, et al. Feasibility and safety of robotic peripheral vascular interventions: results of the RAPID trial. JACC Cardiovasc Interv. 2016;9(19):2058–64.

    PubMed  Google Scholar 

  20. Behnamfar O, Pourdjabbar A, Yalvac E, Reeves R, Mahmud E. First case of robotic percutaneous vascular intervention for below-the-knee peripheral arterial disease. J Invasive Cardiol. 2016;28(11):E128–31.

    PubMed  Google Scholar 

  21. Allencherril J, et al. Outcomes of robotically assisted versus manual percutaneous coronary intervention: a systematic review and meta-analysis. J Invasive Cardiol. 2019;31(8):199–203.

    PubMed  Google Scholar 

  22. Walters D, Reeves RR, Patel M, Naghi J, Ang L, Mahmud E. Complex robotic compared to manual coronary interventions: 6- and 12-month outcomes. Catheter Cardiovasc Interv. 2019;93(4):613–7.

    PubMed  Google Scholar 

  23. Campbell PT, Kruse KR, Kroll CR, Patterson JY, Esposito MJ. The impact of precise robotic lesion length measurement on stent length selection: ramifications for stent savings. Cardiovasc Revasc Med. 2015;16(6):348–50.

    PubMed  Google Scholar 

  24. Campbell PT, Mahmud E, Marshall JJ. Interoperator and intraoperator (in) accuracy of stent selection based on visual estimation. Catheter Cardiovasc Interv. 2015;86(7):1177–83.

    PubMed  Google Scholar 

  25. Bezerra HG, et al. Longitudinal geographic miss (LGM) in robotic assisted versus manual percutaneous coronary interventions. J Interv Cardiol. 2015;28(5):449–55.

    PubMed  Google Scholar 

  26. Costa MA, Angiolillo DJ, Tannenbaum M, Driesman M, Chu A, Patterson J, et al. Impact of stent deployment procedural factors on long-term effectiveness and safety of sirolimus-eluting stents (final results of the multicenter prospective STLLR trial). Am J Cardiol. 2008;101(12):1704–11.

    CAS  PubMed  Google Scholar 

  27. DeRouen TA, Murray JA, Owen W. Variability in the analysis of coronary arteriograms. Circulation. 1977;55(2):324–8.

    CAS  PubMed  Google Scholar 

  28. Galbraith JE, Murphy ML, de Soyza N. Coronary angiogram interpretation. Interobserver variability. JAMA. 1978;240(19):2053–6.

    CAS  PubMed  Google Scholar 

  29. Goldberg RK, Kleiman NS, Minor ST, Abukhalil J, Raizner AE. Comparison of quantitative coronary angiography to visual estimates of lesion severity pre and post PTCA. Am Heart J. 1990;119(1):178–84.

    CAS  PubMed  Google Scholar 

  30. Fleming RM, Kirkeeide RL, Smalling RW, Gould KL, Stuart Y. Patterns in visual interpretation of coronary arteriograms as detected by quantitative coronary arteriography. J Am Coll Cardiol. 1991;18(4):945–51.

    CAS  PubMed  Google Scholar 

  31. Andreassi MG, Piccaluga E, Guagliumi G, del Greco M, Gaita F, Picano E. Occupational health risks in cardiac catheterization laboratory workers. Circ Cardiovasc Interv. 2016;9(4):e003273.

    PubMed  Google Scholar 

  32. Picano E, Vano E. Radiation exposure as an occupational hazard. EuroIntervention. 2012;8(6):649–53.

    PubMed  Google Scholar 

  33. Vano E, et al. Occupational radiation doses in interventional cardiology: a 15-year follow-up. Br J Radiol. 2006;79(941):383–8.

    CAS  PubMed  Google Scholar 

  34. Hasan F, Bonatti J. Robotically assisted percutaneous coronary intervention: benefits to the patient and the cardiologist. Expert Rev Cardiovasc Ther. 2015;13(11):1165–8.

    CAS  PubMed  Google Scholar 

  35. Klein, L.W., et al., Occupational health hazards in the interventional laboratory: time for a safer environment. Catheter Cardiovasc Interv, 2018

  36. Klein LW, Miller DL, Balter S, Laskey W, Haines D, Norbash A, et al. Occupational health hazards in the interventional laboratory: time for a safer environment. J Vasc Interv Radiol. 2009;20(7 Suppl):S278–83.

    PubMed  Google Scholar 

  37. Goldstein JA, Balter S, Cowley M, Hodgson J, Klein LW, on behalf of the Interventional Committee of the Society of Cardiovascular Interventions. Occupational hazards of interventional cardiologists: prevalence of orthopedic health problems in contemporary practice. Catheter Cardiovasc Interv. 2004;63(4):407–11.

    PubMed  Google Scholar 

  38. Almasoud A, Walters D, Mahmud E. Robotically performed excimer laser coronary atherectomy: proof of feasibility. Catheter Cardiovasc Interv. 2018;92(4):713–6.

    PubMed  Google Scholar 

  39. Harrison J, et al. Robotically-assisted percutaneous coronary intervention: reasons for partial manual assistance or manual conversion. Cardiovasc Revasc Med. 2018;19(5 Pt A):526–31.

    PubMed  Google Scholar 

  40. Lo N, Gutierrez JA, Swaminathan RV. Robotic-assisted percutaneous coronary intervention. Curr Treat Options Cardiovasc Med. 2018;20(2):14.

    PubMed  Google Scholar 

  41. Kapur V, Smilowitz NR, Weisz G. Complex robotic-enhanced percutaneous coronary intervention. Catheter Cardiovasc Interv. 2014;83(6):915–21.

    PubMed  Google Scholar 

  42. •• Madder RD, et al. Percutaneous coronary intervention using a combination of robotics and telecommunications by an operator in a separate physical location from the patient: an early exploration into the feasibility of telestenting (the REMOTE-PCI study). EuroIntervention. 2017;12(13):569–1576 This study demonstrated the feasibility of robotic-assisted PCI via remote operation of the robotic system from a different, physically separate, location than the patient.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary K. Wegermann.

Ethics declarations

Conflict of Interest

Zachary K. Wegermann and Sunil V. Rao declare that they have no conflict of interest. Rajesh V. Swaminathan reports personal fees and nonfinancial support from Corindus Vascular Robotics.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on New Therapies for Cardiovascular Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wegermann, Z.K., Swaminathan, R.V. & Rao, S.V. Cath Lab Robotics: Paradigm Change in Interventional Cardiology?. Curr Cardiol Rep 21, 119 (2019). https://doi.org/10.1007/s11886-019-1218-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-019-1218-5

Keywords

Navigation