Skip to main content
Log in

Biomarkers in Occupational Asthma

  • Occupational Allergies (JA Poole, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Work-related asthma is a common disorder among adult asthma patients, and in the case of occupational asthma, it is induced by workplace exposures.

Recent Findings

Occupational asthma provides an excellent model and benchmark for identifying and testing different allergy or inflammatory biomarkers associated with its inception or progression. Moreover, specific inhalation challenge with the incriminated agent represents an experimental setting to identify and validate potential systemic or local biomarkers. Some biomarkers are mainly blood-borne, while local airway biomarkers are derived from inflammatory or resident cells. Genetic and gene–environment interaction studies also provide an excellent framework to identify relevant profiles associated with the risk of developing these work-related conditions.

Summary

Despite significant efforts to identify clinically relevant inflammatory and genomic markers for occupational asthma, apart from the documented utility of airway inflammatory biomarkers, it remains elusive to define specific markers or signatures clearly associated with different endpoints or outcomes in occupational asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Tarlo SM, Lemiere C. Occupational asthma. N Engl J Med. 2014;370:640–9.

    Article  CAS  PubMed  Google Scholar 

  2. Moscato G, Pala G, Barnig C, De Blay F, Del Giacco SR, Folletti I, et al. EAACI Consensus statement for investigation of work-related asthma in non-specialized centres. Allergy. 2012;67:491–501.

    Article  CAS  PubMed  Google Scholar 

  3. Vandenplas O, Wiszniewska M, Raulf M, de Blay F, Gerth van Wijk R, Moscato G, et al. EAACI position paper: irritant-induced asthma. Allergy. 2014;69:1141–53.

    Article  CAS  PubMed  Google Scholar 

  4. Dufour MH, Lemiere C, Prince P, Boulet LP. Comparative airway response to high versus low-molecular weight agents in occupational asthma. Eur Respir J. 2009;33:734–9.

    Article  PubMed  Google Scholar 

  5. Vandenplas O, Suojalehto H, Aasen TB, Baur X, Burge PS, de Blay F, et al. ERS Task Force Report on Occupational Asthma. Specific inhalation challenge in the diagnosis of occupational asthma: consensus statement. Eur Respir J. 2014;43:1573–87. This consensus statement provides practical recommendations for specific inhalation challenge in the diagnosis of occupational asthma derived from a systematic literature search, a census of active European centres, a Delphi conference, and expert consensus.

    Article  PubMed  Google Scholar 

  6. Quirce S. Eosinophilic bronchitis in the workplace. Curr Opin Allergy Clin Immunol. 2004;4:87–91.

    Article  PubMed  Google Scholar 

  7. Quirce S, Lemière C, De Blay F, Del Pozo V, Gerth van Wijk R, Maestrelli P, et al. EAACI Task Force Consensus Report. Non-invasive methods for assessment of airway inflammation in occupational settings. Allergy. 2010;65:445–58.

    Article  CAS  PubMed  Google Scholar 

  8. Lemière C, D’Alpaos V, Chaboillez S, César M, Wattiez M, Chiry S, et al. Investigation of occupational asthma sputum cell counts or exhaled nitric oxide? Chest. 2010;137:617–22.

    Article  PubMed  Google Scholar 

  9. Raulf-Heimsoth M, Liebig R, Marczynsky B, Borowitzki G, Bernard S, Freundt S, et al. Implementation of non-invasive methods in the diagnosis of diisocyanate-induced asthma. Adv Exp Med Biol. 2013;788:293–300.

    Article  CAS  PubMed  Google Scholar 

  10. Lemière C, Chaboillez S, Malo JC, Cartier A. Changes in sputum cell counts alters exposure to occupational agents: what do they mean? J Allergy Clin Immunol. 2001;107:1063–8.

    Article  PubMed  Google Scholar 

  11. Vandenplas O, D’Alpaos HJ, Jamart J, Thimpont J, Huaux F, et al. Sputum eosinophilia: an early marker of bronchial response to occupational agents. Allergy. 2009;64:754–61.

    Article  CAS  PubMed  Google Scholar 

  12. Malo JL, Cardinal S, Ghezzo H, L’Archeveche J, Castellanos L, Maghni K. Association of bronchial reactivity to occupational agents with methacholine reactivity, sputum cells and immunoglobulin E-mediated reactivity. Clin Exp Allergy. 2011;41:497–504.

    Article  CAS  PubMed  Google Scholar 

  13. Sánchez-Vidaurre S, Cruz MJ, Gómez-Ollés S, Morel F, Muñoz X. Sputum inflammatory profile before and after specific inhalation challenge in individuals with suspected occupational asthma. PLoS One. 2013;8:e78304. This is the first study comparing inflammatory cell percentages and inflammatory markers in sputum samples of subjects with and without occupational asthma and between HMW- and LMW-induced asthma.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Prince P, Lemière C, Dufour MH, Chaboillez S, Boulet LP. Airway inflammatory responses following exposure to occupational agents. Chest. 2012;141:1522–7.

    Article  PubMed  Google Scholar 

  15. Leigh R, Hargreave FE. Occupational neutrophilic asthma. Can Respir J. 1999;6:194–6.

    Article  CAS  PubMed  Google Scholar 

  16. Pala G, Pignatti P, Moscato G. Occupational exposure to toluene diisocyanate and neutrophilic bronchitis without asthma. Clin Toxicol. 2011;49:506–7.

    Article  CAS  Google Scholar 

  17. Essat M, Harnan S, Gomersall T, Tappenden P, Wong R, Pavord I, et al. Fractional exhaled nitric oxide for the management of asthma in adults: a systematic review. Eur Respir J. 2016;47:751–68.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Piipari R, Piirila P, Keskinen H, Tuppurainen M, Sovijarvi A, Nordmana H. Exhaled nitric oxide in specific challenge tests to assess occupational asthma. Eur Respir J. 2002;20:1532–7.

    Article  CAS  PubMed  Google Scholar 

  19. Lemiere C, Nguyen S, Sava F, D’Alpaos V, Huaux F, Vandenplas O. Occupational asthma phenotypes identified by increased fractional exhaled nitric oxide after exposure to causal agents. J Allergy Clin Immunol. 2014;134:1063–7. Statistical cluster analysis was realized in a prospective observational study that included subjects who had been investigated for possible occupational asthma.

    Article  CAS  PubMed  Google Scholar 

  20. Ferrazoni S, Scarpa MC, Guarnieri G, Corraldi M, Mutti A, Maestrelli P. Exhaled nitric oxide and breath condensate pH in asthmatic reactions induced by isocyanates. Chest. 2009;136:155–62.

    Article  Google Scholar 

  21. Pedrosa M, Barranco P, Lopez-Carrasco V, Quirce S. Changes in exhaled nitric oxide levels after bronchial allergen challenge. Lung. 2012;190:209–14.

    Article  CAS  PubMed  Google Scholar 

  22. Sastre J, Costa C, Garcia del Potro M, Aguado E, Mahillo I, Férnandez-Nieto M. Changes in exhaled nitric oxide after inhalation challenge with occupational agents. J Investig Allergol Clin Immunol. 2013;23:421–7.

    CAS  PubMed  Google Scholar 

  23. Walters GI, Moore VC, McGrath EE, Burge S. Fractional exhaled nitric oxide in the interpretation of specific inhalational challenge tests for occupational asthma. Lung. 2014;192:119–24.

    Article  CAS  PubMed  Google Scholar 

  24. Swierczynska-Machura D, Krakowiak A, Wiszniewska M, Dudek W, Walusiak J, Palczynski C. Exhaled nitric oxide levels after specific inhalatory challenge test in subjects with diagnosed occupational asthma. Int J Occup Med Environ Health. 2008;21:219–25.

    Article  PubMed  Google Scholar 

  25. Vandenplas O, D’Alpaos V, Evrard G, Jamart J, Thimpont J, Huaux F, et al. Asthma related to cleaning agents: a clinical insight. BMJ Open. 2013;3:e003568.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Talini D, Novelli F, Bacci E, Bartoli M, Cianchetti S, Costa F, et al. Sputum eosinophilia is a determinant of FEV1 decline in occupational asthma: results of an observational study. BMJ Open. 2015;5:e005748. In this study, higher baseline sputum levels could appear as a possible determinant of the decline in FEV1 in patients with OA who continued at work. Although the number of patients examined is relatively small, the study suggests that higher levels of inflammation may cause an accelerated decline in FEV1.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kleniewska A, Walusiak-Skorupa J, Piotrowski W, Nowakowska-Swirta E, Wiszniewska M. Comparison of biomarkers in serum and induced sputum of patients with occupational asthma and chronic obstructive pulmonary disease. J Occup Health 2016;58:333–9.

  28. Castano R, Miedinger D, Maghni K, Ghezzo H, Trudeau C, Castellanos L, et al. Matrix metalloproteinase-9 increases in the sputum from allergic occupational asthma patients after specific inhalation challenge. Int Arch Allergy Immunol. 2013;160:161–4.

    Article  CAS  PubMed  Google Scholar 

  29. Baatjies R, Jeebhay MF. Sensitization to cereal flour allergens is a major determinant of elevated exhaled nitric oxide in bakers. Occup Environ Med. 2013;70:310–6.

    Article  CAS  PubMed  Google Scholar 

  30. Tafuro F, Ridolo E, Goldoni M, Montagni M, Mutti A, Corradi M. Work-related allergies to storage mites in Parma (Italy) ham workers. BMJ Open. 2015;5:e007502.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Van der Walt A, Baatjies, Singh T, Jeebhay MF. Environmental factors associated with baseline and serial changes in fractional exhaled nitric oxide (FeNO) in spice mill workers. Occup Environ Med. 2016. doi:10.1136/oemed-2015-103005.

  32. Jonaid BS, Pronk A, Doekes G, Heederik D. Exhaled nitric oxide in spray painters exposed to isocyanates: effect modification by atopy and smoking. Occup Environ Med. 2014;71:415–22.

    Article  CAS  PubMed  Google Scholar 

  33. Shiryaeva O, Aasmoe L, Straume B, Bang BE. Respiratory symptoms, lung functions and exhaled nitric oxide (FeNO) in two types of fish processing workers: Russian trawler fishermen and Norwegian salmon industry workers. Int J Occup Environ Health. 2015;21:53–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vizcaya D, Mirabelli MC, Orriols R, Antó JM, Barreiro E, Burgos F, et al. Functional and biological characteristics of asthma in cleaning workers. Respir Med. 2013;107:673–83.

    Article  PubMed  Google Scholar 

  35. Hur GY, Park HS. Biological and genetic markers in occupational asthma. Curr Allergy Asthma Rep. 2015;15:488.

    Article  PubMed  Google Scholar 

  36. Kim MH, Jung JW, Kang HR. The usefulness of job relocation and serum eosinophil cationic protein in baker’s asthma. Int Arch Allergy Immunol. 2013;161:252–7.

    Article  PubMed  Google Scholar 

  37. Pelclová D, Fenclová Z, Vlcková S, Klusachová P, Levedová P, Syslová K, et al. Occupational asthma follow-up: which markers are elevated in exhaled breath condensate and plasma? Int J Occup Med Environ Health. 2014;27:205–15.

    Article  Google Scholar 

  38. Palczynski C, Walusiak J, Ruta U, Górski P. Occupational asthma and rhinitis due to glutaraldehyde: changes in nasal lavage fluid after specific inhalatory challenge test. Allergy. 2001;56:1186–91.

    Article  CAS  PubMed  Google Scholar 

  39. Castano R, Thériault G, Maghni K, Ghezzo H, Malo JL, Gautrin D. Reproducibility of nasal lavage in the context of the inhalation challenge investigation of occupational rhinitis. Am J Rhinol. 2008;22:271–5.

    Article  PubMed  Google Scholar 

  40. Beach J, Russell K, Blitz S, Hooton N, Spooner C, Lemiere C, et al. A systematic review of the diagnosis of occupational asthma. Chest. 2007;131:569–78.

    Article  PubMed  Google Scholar 

  41. Sastre J, Sastre B, Fernández-Nieto M, et al. Serum ferritin and transferrin levels are not serologic markers of toluene diisocyanate-induced occupational asthma. J Allergy Clin Immunol. 2010;125:762–4.

    Article  CAS  PubMed  Google Scholar 

  42. Palikhe NS, Kim JH, Park HS. Biomarkers predicting isocyanate-induced asthma. Allergy, Asthma Immunol Res. 2011;3:21–6.

    Article  CAS  Google Scholar 

  43. Kim SH, Choi GS, Nam YH, et al. Role of vitamin D-binding protein in isocyanate-induced occupational asthma. Exp Mol Med. 2012;44:319–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Czerska M, Zielinski M, Gromadzinska J. Isoprostanes—a novel major group of oxidative stress markers. Int J Occup Med Environ Health. 2016;29:179–90.

    PubMed  Google Scholar 

  45. Kim SH, Cho BY, Park CS, Shin ES, Cho EY, Yang EM, et al. Alpha-T-catenin (CTNNA3) gene was identified as a risk variant for toluene diisocyanate-induced asthma by genome-wide association analysis. Clin Exp Allergy. 2009;39:203–12.

    Article  CAS  PubMed  Google Scholar 

  46. Yucesoy B, Kaufman KM, Lummus ZL, Weirauch MT, Zhang G, Cartier A, et al. Genome-wide association study identifies novel loci associated with diisocyanate-induced occupational asthma. Toxicol Sci. 2015;146:192–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mapp CE, Beghe B, Balboni A, Zamorani G, Padoan M, Jovine L, et al. Association between HLA genes and susceptibility to toluene diisocyanate-induced asthma. Clin Exp Allergy. 2000;30:651–6.

    Article  CAS  PubMed  Google Scholar 

  48. Bignon JS, Aron Y, Ju LY, Kopferschmitt MC, Garnier R, Mapp C, et al. HLA class II alleles in isocyanate-induced asthma. Am J Respir Crit Care Med. 1994;149:71–5.

    Article  CAS  PubMed  Google Scholar 

  49. Balboni A, Baricordi OR, Fabbri LM, Gandini E, Ciaccia A, Mapp CE. Association between toluene diisocyanate-induced asthma and DQB1 markers: a possible role for aspartic acid at position 57. Eur Respir J. 1996;9:207–10.

    Article  CAS  PubMed  Google Scholar 

  50. Horne C, Quintana PJ, Keown PA, Dimich-Ward H, Chan-Yeung M. Distribution of DRB1 and DQB1 HLA class II alleles in occupational asthma due to western red cedar. Eur Respir J. 2000;15:911–4.

  51. Choi JH, Lee KW, Kim CW, Park CS, Lee HY, Hur GY, et al. The HLA DRB1*1501-DQB1*0602-DPB1*0501 haplotype is a risk factor for toluene diisocyanate-induced occupational asthma. Int Arch Allergy Immunol. 2009;150:156–63.

    Article  CAS  PubMed  Google Scholar 

  52. Yucesoy B, Johnson VJ, Lummus ZL, Kashon ML, Rao M, Bannerman-Thompson H, et al. Genetic variants in the major histocompatibility complex class I and class II genes are associated with diisocyanate-induced asthma. J Occup Environ Med. 2014;56:382–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bernstein DI, Kashon M, Lummus ZL, Johnson VJ, Fluharty K, Gautrin D, et al. CTNNA3 (α-catenin) gene variants are associated with diisocyanate asthma: a replication study in a Caucasian worker population. Toxicol Sci. 2013;131:242–6. First genetic marker consistently replicated in two populations from different genetic background.

    Article  CAS  PubMed  Google Scholar 

  54. Mapp CE, Fryer AA, De Marzo N, Pozzato V, Padoan M, Boschetto P, et al. Glutathione S-transferase GSTP1 is a susceptibility gene for occupational asthma induced by isocyanates. J Allergy Clin Immunol. 2002;109:867–72.

    Article  CAS  PubMed  Google Scholar 

  55. Yucesoy B, Johnson VJ, Lummus ZL, Kissling GE, Fluharty K, Gautrin D, et al. Genetic variants in antioxidant genes are associated with diisocyanate-induced asthma. Toxicol Sci. 2012;129:166–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Piirilä P, Wikman H, Luukkonen R, Kääriä K, Rosenberg C, Nordman H, et al. Glutathione S-transferase genotypes and allergic responses to diisocyanate exposure. Pharmacogenetics. 2001;11:437–45.

    Article  PubMed  Google Scholar 

  57. Yucesoy B, Kissling GE, Johnson VJ, Lummus ZL, Gautrin D, Cartier A, et al. N-acetyltransferase 2 genotypes are associated with diisocyanate-induced asthma. J Occup Environ Med. 2015;57:1331–6.

    Article  CAS  PubMed  Google Scholar 

  58. Yucesoy B, Kashon ML, Johnson VJ, Lummus ZL, Fluharty K, Gautrin D, et al. Genetic variants in TNFα, TGFβ1, PTGS1 and PTGS2 genes are associated with diisocyanate-induced asthma. J Immunotoxicol. 2016;13:119–26.

    Article  PubMed  Google Scholar 

  59. Ouyang B, Bernstein DI, Lummus ZL, Ying J, Boulet LP, Cartier A, et al. Interferon-γ promoter is hypermethylated in blood DNA from workers with confirmed diisocyanate asthma. Toxicol Sci. 2013;133:218–24. First epigenetic modification suggested as possible diagnostic marker.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gao Z, Dosman JA, Rennie DC, Schwartz DA, Yang IV, Beach J, et al. Association of Toll-like receptor 2 gene polymorphisms with lung function in workers in swine operations. Ann Allergy Asthma Immunol. 2013;110:44–50.

    Article  CAS  PubMed  Google Scholar 

  61. Pacheco K, Rose C, Silveira LJ, van Dyke M, Goelz K, Macphail K, et al. Gene–environment interactions influence airways function in laboratory animal workers. J Allergy Clin Immunol. 2010;126:232–40.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hang J, Zhou W, Wang X, Zhang H, Sun B, Dai H, et al. Microsomal epoxide hydrolase, endotoxin, and lung function decline in cotton textile workers. Am J Respir Crit Care Med. 2005;171:165–70.

    Article  PubMed  Google Scholar 

  63. Israel E, Chinchilli VM, Ford JG, Boushey HA, Cherniack R, Craig TJ, et al. Use of regularly scheduled albuterol treatment in asthma: genotype-stratified, randomised, placebo-controlled cross-over trial. Lancet. 2004;364:1505–12.

    Article  CAS  PubMed  Google Scholar 

  64. Cho HJ, Kim SH, Kim JH, Choi H, Son JK, Hur GY, et al. Effect of Toll-like receptor 4 gene polymorphisms on work-related respiratory symptoms and sensitization to wheat flour in bakery workers. Ann Allergy Asthma Immunol. 2011;107:57–64.

    Article  CAS  PubMed  Google Scholar 

  65. Hur GY, Ye YM, Koh DH, Kim SH, Park HS. IL-4 receptor α polymorphisms may be a susceptible factor for work-related respiratory symptoms in bakery workers. Allergy, Asthma Immunol Res. 2013;5:371–6.

    Article  CAS  Google Scholar 

  66. Marraccini P, Cantone L, Barretta F, Marsili C, Leghissa P, Santini M, et al. Inflammatory markers and genetic polymorphisms in workers exposed to flour dust. J Occup Environ Med. 2016;58:e166–70.

    Article  CAS  PubMed  Google Scholar 

  67. Jeal H, Draper A, Jones M, Harris J, Welsh K, Taylor AN, et al. HLA associations with occupational sensitization to rat lipocalin allergens: a model for other animal allergies? J Allergy Clin Immunol. 2003;111:795–9.

    Article  CAS  PubMed  Google Scholar 

  68. Kauppinen A, Peräsaari J, Taivainen A, Kinnunen T, Saarelainen S, Rytkönen-Nissinen M, et al. Association of HLA class II alleles with sensitization to cow dander Bos d 2, an important occupational allergen. Immunobiology. 2012;217:8–12.

    Article  CAS  PubMed  Google Scholar 

  69. Shiina T, Inoko H, Kulski JK. An update of the HLA genomic region, locus information and disease associations. Tissue Antigens. 2004;64:631–49.

    Article  CAS  PubMed  Google Scholar 

  70. Rihs HP, Barbalho-Krölls T, Huber H, Bau X. No evidence for the influence of HLA class II in alleles in isocyanate-induced asthma. Am J Ind Med. 1997;32:522–7.

    Article  CAS  PubMed  Google Scholar 

  71. Jones MG, Nielsen J, Welch J, Harris J, Welinder H, Bensryd I, et al. Association of HLA-DQ5 and HLA-DR1 with sensitization to organic acid anhydrides. Clin Exp Allergy. 2004;34:812–6.

    Article  CAS  PubMed  Google Scholar 

  72. Janssens B, Mohapatra B, Vatta M, Goossens S, Vanpoucke G, Kools P, et al. Assessment of the CTNNA3 gene encoding human alpha T-catenin regarding its involvement in dilated cardiomyopathy. Hum Genet. 2003;112:227–36.

    CAS  PubMed  Google Scholar 

  73. Janssens B, Goossens S, Staes K, Gilbert B, van Hengel J, Colpaert C, et al. AlphaT-catenin: a novel tissue-specific beta-catenin-binding protein mediating strong cell–cell adhesion. J Cell Sci. 2001;114:3177–88.

    CAS  PubMed  Google Scholar 

  74. Bowler RP. Oxidative stress in the pathogenesis of asthma. Curr Allergy Asthma Rep. 2004;4:116–22.

    Article  PubMed  Google Scholar 

  75. Rahman I, Biswas SK, Kode A. Oxidant and antioxidant balance in the airways and airway diseases. Eur J Pharmacol. 2006;533:222–39.

    Article  CAS  PubMed  Google Scholar 

  76. Littorin M, Hou S, Broberg K, Bjork J, Falt S, Abdoulaye G, et al. Influence of polymorphic metabolic enzymes on biotransformation and effects of diphenylmethane diisocyanate. Int Arch Occup Environ Health. 2008;81:429–4.

    Article  CAS  PubMed  Google Scholar 

  77. Wisnewski AV, Liu Q, Liu J, Redlich CA. Glutathione protects human airway proteins and epithelial cells from isocyanates. Clin Exp Allergy. 2005;35:352–7.

    Article  CAS  PubMed  Google Scholar 

  78. Fryer AA, Bianco A, Hepple M, Jones PW, Strange RC, Spiteri MA. Polymorphism at the glutathione S-transferase GSTP1 locus. A new marker for bronchial hyperresponsiveness and asthma. Am J Respir Crit Care Med. 2000;161:1437–42.

    Article  CAS  PubMed  Google Scholar 

  79. Aynacioglu AS, Nacak M, Filiz A, Ekinci E, Roots I. Protective role of glutathione S-transferase P1 (GSTP1) Val105Val genotype in patients with bronchial asthma. Br J Clin Pharmacol. 2004;57:213–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Anttila S, Hirvonen A, Vainio H, Husgafvel-Pursiainen K, Hayes JD, Ketterer B. Immunohistochemical localization of glutathione S-transferases in human lung. Cancer Res. 1993;53:5643–8.

    CAS  PubMed  Google Scholar 

  81. Cantlay AM, Smith CA, Wallace WA, Yap PL, Lamb D, Harrison DJ. Heterogeneous expression and polymorphic genotype of glutathione S-transferases in human lung. Thorax. 1994;49:1010–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ivaschenko TE, Sideleva OG, Baranov VS. Glutathione-S-transferase micro and theta gene polymorphisms as new risk factors of atopic bronchial asthma. J Mol Med. 2002;80:39–43.

    Article  CAS  PubMed  Google Scholar 

  83. Kabesch M, Hoefler C, Carr D, Leupold W, Weiland SK, von Mutius E. Glutathione S transferase deficiency and passive smoking increase childhood asthma. Thorax. 2004;59:569–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Karam RA, Pasha HF, El-Shal AS, Rahman HM, Gad DM. Impact of glutathione-S-transferase gene polymorphisms on enzyme activity, lung function and bronchial asthma susceptibility in Egyptian children. Gene. 2012;497:314–9.

    Article  CAS  PubMed  Google Scholar 

  85. Hassan HM. Biosynthesis and regulation of superoxide dismutases. Free Radic Biol Med. 1988;5:377–85.

    Article  CAS  PubMed  Google Scholar 

  86. Kuo Chou TN, Li YS, Lue KH, Liao CF, Lin Y, Tzeng PR, et al. Genetic polymorphism of manganese superoxide dismutase is associated with childhood asthma. J Asthma. 2010;47:532–8.

    Article  CAS  PubMed  Google Scholar 

  87. Siedlinski M, van Diemen CC, Postma DS, Vonk JM, Boezen HM. Superoxide dismutases, lung function and bronchial responsiveness in a general population. Eur Respir J. 2009;33:986–92.

    Article  CAS  PubMed  Google Scholar 

  88. Hassett C, Aicher L, Sidhu JS, Omiecinski CJ. Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum Mol Genet. 1994;3:421–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tung KY, Tsai CH, Lee YL. Microsomal epoxide hydroxylase genotypes/diplotypes, traffic air pollution, and childhood asthma. Chest. 2011;139:839–84.

    Article  CAS  PubMed  Google Scholar 

  90. Hein DW. Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis. Mutat Res. 2002;506–507:65–77.

    Article  PubMed  Google Scholar 

  91. Bateman ED, Hurd SS, Barnes PJ, Bousquet J, Drazen JM, FitzGerald M, et al. Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J. 2008;31:143–78.

    Article  CAS  PubMed  Google Scholar 

  92. Windmill KF, Gaedigk A, Hall PM, Samaratunga H, Grant DM, McManus ME. Localization of N-acetyltransferases NAT1 and NAT2 in human tissues. Toxicol Sci. 2000;54:19–29.

    Article  CAS  PubMed  Google Scholar 

  93. Bolognesi C, Baur X, Marczynski B, Norppa H, Sepai O, Sabbioni G. Carcinogenic risk of toluene diisocyanate and 4,4′-methylenediphenyl diisocyanate: epidemiological and experimental evidence. Crit Rev Toxicol. 2001;31:737–72.

    Article  CAS  PubMed  Google Scholar 

  94. Bernstein DI, Wang N, Campo P, Chakraborty R, Smith A, Cartier A, et al. Diisocyanate asthma and gene-environment interactions with IL4RA, CD-14, and IL-13 genes. Ann Allergy Asthma Immunol. 2006;97:800–6.

    Article  CAS  PubMed  Google Scholar 

  95. Bernstein DI, Kissling GE, Khurana-Hershey G, Yucesoy B, Johnson VJ, Cartier A, et al. Hexamethylene diisocyanate asthma is associated with genetic polymorphisms of CD14, IL-13, and IL-4 receptor alpha. J Allergy Clin Immunol. 2011;128:418–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bernstein DI. Genetics of occupational asthma. Curr Opin Allergy Clin Immunol. 2011;11:86–9.

    Article  CAS  PubMed  Google Scholar 

  97. Gautrin D, Malo JL. Risk factors, predictors and markers for work-related asthma and rhinitis. Curr Allergy Asthma Rep. 2010;10:365–72.

    Article  PubMed  Google Scholar 

  98. Pacheco K, Maier L, Silveira L, Goelz K, Noteware K, Luna B, et al. Association of Toll-like receptor 4 alleles with symptoms and sensitization to laboratory animals. J Allergy Clin Immunol. 2008;122:896–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kim SH, Hur GY, Jin HJ, Choi H, Park HS. Effect of interleukin-18 gene polymorphisms on sensitization to wheat flour in bakery workers. J Korean Med Sci. 2012;27:382–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Acouetey DS, Zmirou-Navier D, Avogbe PH, Tossa P, Rémen T, Barbaud A, et al. Genetic predictors of inflammation in the risk of occupational asthma in young apprentices. Ann Allergy Asthma Immunol. 2013;110:423–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Dominguez-Ortega.

Ethics declarations

Conflict of Interest

Drs. Dominguez-Ortega, Barranco, Rodríguez-Pérez, and Quirce declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Occupational Allergies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dominguez-Ortega, J., Barranco, P., Rodríguez-Pérez, R. et al. Biomarkers in Occupational Asthma. Curr Allergy Asthma Rep 16, 63 (2016). https://doi.org/10.1007/s11882-016-0644-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-016-0644-3

Keywords

Navigation