Skip to main content

Advertisement

Log in

Immune Response to Nanomaterials: Implications for Medicine and Literature Review

  • Basic and Applied Science (M Frieri, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Nanomaterials, substances below 100 nm, are increasingly used in medical diagnosis and treatment every day. The use of such materials has helped deliver drugs across the blood–brain barrier, alleviate allergy symptoms, specifically target cancer or HIV cells, and more. However, the tunable characteristics of such materials have not been perfected. The different materials, sizes, shapes, and structures have different responses on the body. This paper will investigate the successful treatments made with nanoparticles and some general health effects. A review of the literature revealed an inflammatory response and an increased production of reactive oxidative species (ROS) to be common immune responses to nanomaterial use. The mechanisms by which the inflammatory response and ROS production occur will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Saltan N, Kutlu HM, Hür D, Işcan A, Say R. Interaction of cancer cells with magnetic nanoparticles modified by methacrylamido-folic acid. Int J Nanomedicine. 2011;6:477–8.

    PubMed  CAS  Google Scholar 

  2. Gao T, Li Q, Wang T. Sonochemical Synthesis, Optical Properties, and Electrical Properties of Core/Shell-Type ZnO Nanorod/CdS Nanoparticle Composites. Chem Mater. 2005;17:887–92.

    Article  CAS  Google Scholar 

  3. Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M. Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med Oxf Engl. 2006;56:300–6.

    Article  CAS  Google Scholar 

  4. Yoshida M, Lahann J. Smart Nanomaterials. ACS Nano. 2008;2:1101–7.

    Article  PubMed  CAS  Google Scholar 

  5. Lonkar P, Dedon PC. Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates. Int J Cancer. 2011;128:1999–2009.

    Article  PubMed  CAS  Google Scholar 

  6. Mikhaylov G, et al. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat Nanotechnol. 2011;6:594–602.

    Article  PubMed  CAS  Google Scholar 

  7. • Fan K, et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotechnol. 2012. This paper examined over 400 clinical specimens from patients with nine types of cancer and verified that nanoparticles can distinguish cancerous cells from normal cells with a sensitivity of 98 % and specificity of 95 %.

  8. Nelson AM, et al. Tissue Regeneration, Stem Cells, and Wound Healing. J Invest Dermatol. 2011;132:S135–48.

    Google Scholar 

  9. Klimek L, et al. Assessment of clinical efficacy of CYT003-QbG10 in patients with allergic rhinoconjunctivitis: a phase IIb study. Clin Exp Allergy. 2011;41:1305–12.

    Article  PubMed  CAS  Google Scholar 

  10. • Teste B, et al. Microchip integrating magnetic nanoparticles for allergy diagnosis. Lab Chip. 2011;21:b4207–13. This paper reported on the development of a simple and easy to use microchip dedicated to allergy diagnosis which combines both the advantages of homogeneous immunoassays and heterogeneous immunoassays.

    Article  Google Scholar 

  11. Liu Z, et al. Local nasal immunotherapy: efficacy of Dermatophagoides farinae-chitosan vaccine in murine asthma. Int Arch Allergy Immunol. 2009;150:221–8.

    Article  PubMed  CAS  Google Scholar 

  12. Mahajan SD, et al. Nanotherapeutics Using an HIV-1 Poly A and Transactivator of the HIV-1 LTR-(TAR-) Specific siRNA. Patholog Res Int. 2011.

  13. Frieri M, et al. Vascular Endothelial Growth Factor and Tumor Necrosis Factor Alpha in Brain Tissue from HIV Positive Patients with/without Central Nervous System Lesions FOCIS. Clin Immunol. 2010.

  14. Mahajan SD. Enhancing the delivery of anti retroviral drug "Saquinavir" across the blood brain barrier using nanoparticles. Curr HIV Res. 2010;8:396–404.

    Article  PubMed  CAS  Google Scholar 

  15. Powers KW, Palazuelos M, Moudgil BM, Roberts SM. Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology. 2007;1:42–51.

    Article  CAS  Google Scholar 

  16. Buzea C, Pacheco I, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2007;2:MR17–71.

    Article  PubMed  Google Scholar 

  17. Hansen S. A global view of regulations affecting nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2:441–9.

    Article  PubMed  CAS  Google Scholar 

  18. Cuenya BR. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films. 2010;518:3127–50.

    Article  CAS  Google Scholar 

  19. Kim B, Rutka J, Chan W. Nanomedicine. N Engl J Med. 2010;363:2434–43.

    Article  PubMed  CAS  Google Scholar 

  20. Jiang W, Kim B, Rutka J, Chan W. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol. 2008;3:145–50.

    Article  PubMed  CAS  Google Scholar 

  21. Sanhai W, Sakamoto J, Canady R, Ferrari M. Seven challenges for nanomedicine. Nat Nanotechnol. 2008;3:242–4.

    Article  PubMed  CAS  Google Scholar 

  22. Kandasamy R, et al. Isatin down-regulates expression of atrial natriuretic peptide receptor A and inhibits airway inflammation in a mouse model of allergic asthma. Int Immunopharmacol. 2010;10:218–25.

    Article  PubMed  CAS  Google Scholar 

  23. Pan YH, et al. 3D morphology of the human hepatic ferritin mineral core: new evidence for a subunit structure revealed by single particle analysis of HAADF-STEM images. J Struct Biol. 2009;166:22–31.

    Article  PubMed  CAS  Google Scholar 

  24. Kalgaonkar S, Lonnerdal S. Receptor-mediated uptake of ferritin-bound iron by human intestinal Caco-2 cells. J Nutr Biochem. 2009;20:304–11.

    Article  PubMed  CAS  Google Scholar 

  25. Des Rieux A, et al. Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. Eur J Pharm Sci. 2005;25:455–65.

    Article  PubMed  CAS  Google Scholar 

  26. Frieri M. Food Hypersensitivity and Adverse Reactions: A Practical Guide for Diagnosis and Management. Chapter 2. New York: Marcel Dekker; 1999. p. 39–50.

    Google Scholar 

  27. Shahzad G, Mustacchia P, Frieri M. Role of mucosal inflammation in eosinophilic esophagitis: Review of the literature, International Scholarly Research Network (ISRN). Gastroenterology. 2011;2011:Article ID 468073.

  28. Fievez V, et al. Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination. Eur J Pharm Biopharm. 2009;73:16–24.

    Article  PubMed  CAS  Google Scholar 

  29. Verma A, et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater. 2008;7:588–95.

    Article  PubMed  CAS  Google Scholar 

  30. Balasubramaniana S, Jittiwatb J, Manikandanc J, Ongd C, Yua L. Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials. 2010;31:2034–42.

    Article  Google Scholar 

  31. Deng X, et al. Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon. 2007;45:1419–24.

    Article  CAS  Google Scholar 

  32. Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm. 2008;5:316–27.

    Article  PubMed  CAS  Google Scholar 

  33. Yang RS, et al. Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ Health Perspect. 2007;5:1339–43.

    Article  Google Scholar 

  34. Garnett MC, Kallinteri P. Nanomedicines and nanotoxicology: some physiological principles. Occup Med. 2006;56:307–11.

    Article  CAS  Google Scholar 

  35. Chompoosor A, et al. The Role of Surface Functionality on Acute Cytotoxicity, ROS Generation and DNA Damage by Cationic Gold Nanoparticles. Small. 2010;20:2246–9.

    Article  Google Scholar 

  36. Romoser A, et al. Distinct immunomodulatory effects of a panel of nanomaterials in human dermal fibroblasts. Toxicol Lett. 2012;210:293–301.

    Article  PubMed  CAS  Google Scholar 

  37. Carlson C, et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 2008;112:13608–19.

    Article  PubMed  CAS  Google Scholar 

  38. Kim S, et al. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro. 2009;23:1076–84.

    Article  PubMed  CAS  Google Scholar 

  39. Arora S, Jain J, Rajwade JM. Paknikar KM Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett. 2008;179:93–100.

    Article  PubMed  CAS  Google Scholar 

  40. Foldbjerg R, Dang D, Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol. 2011;85:743–50.

    Article  PubMed  CAS  Google Scholar 

  41. •• Lee S, Yun HS, Kim SH. The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis. Biomaterials. 2011;32:9434–43. This paper stated that the mesoporous silica nanoparticles exhibit better biocompatibility than colloidal silica and promise excellent potential usage in the field of biomedical and biotechnological applications.

    Article  PubMed  CAS  Google Scholar 

  42. Napierska D, Thomassen L, Lison D, Martens J, Hoet P. The nanosilica hazard: another variable entity. Part Fibre Toxicol. 2010;7:39.

    Article  PubMed  CAS  Google Scholar 

  43. Mahler G, et al. Oral exposure to polystyrene nanoparticles affects iron absorption. Nat Nanotechnol. 2012;7:264–71.

    Article  PubMed  CAS  Google Scholar 

  44. Yamashita K, et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol. 2011;6:321–8.

    Article  PubMed  CAS  Google Scholar 

  45. Downs T, et al. Silica nanoparticles administered at the maximum tolerated dose induce genotoxic effects through an inflammatory reaction while gold nanoparticles do not. Mutat Res. 2012;745:38–50.

    Article  PubMed  CAS  Google Scholar 

  46. Niidome T, et al. PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release. 2006;114:343–7.

    Article  PubMed  CAS  Google Scholar 

  47. Bailon P, Won CY. PEG-modified biopharmaceuticals. Expert Opin Drug Deliv. 2009;6:1–16.

    Article  PubMed  CAS  Google Scholar 

  48. Vonarbourg A, Passirani C. saulnier, S., Benoit, J.P. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials. 2006;27:4356–73.

    Article  PubMed  CAS  Google Scholar 

  49. Kah JC, et al. Critical parameters in the pegylation of gold nanoshells for biomedical applications: an in vitro macrophage study. J Drug Target. 2009;17:181–93.

    Article  PubMed  CAS  Google Scholar 

  50. Lipka J, et al. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials. 2010;31:6574–81.

    Article  PubMed  CAS  Google Scholar 

  51. Shah NB, et al. Blood- Nanoparticles interactions and in vivo biodistribution: Impact of surface PEG ligand properties. Mol Pharm. 2012.

  52. Yang ST. Covalently PEGylated carbon nanotubes with stealth character in vivo. Small. 2008;4:940–4.

    Article  PubMed  CAS  Google Scholar 

  53. Liu AH. In Vivo studies of the toxicity of multi-wall carbon nanotubes. Adv Mater Res. 2011;345:287–91.

    Article  Google Scholar 

  54. Crouzier D, et al. Carbon nanotubes induce inflammation but decrease the production of reactive oxygen species in lung. Toxicology. 2010;272:39–45.

    Article  PubMed  CAS  Google Scholar 

  55. Frieri M. Advances in understanding allergic asthma. Allergy Asthma Proc. 2007;28:614–9.

    Article  PubMed  CAS  Google Scholar 

  56. Inouea K, Yanagisawaa R, Koikea E, Nishikawab M, Takano H. Repeated pulmonary exposure to single-walled carbon nanotubes exacerbates allergic inflammation of the airway: Possible role of oxidative stress. Free Radic Biol Med. 2010;48:924–34.

    Article  Google Scholar 

  57. Thurnherr T, et al. A comparison of acute and long-term effects of industrial multiwalled carbon nanotubes on human lung and immune cells in vitro. Toxicol Lett. 2011;200:176–86.

    Article  PubMed  CAS  Google Scholar 

  58. Toyama T, et al. A case of toxic epidermal necrolysis-like dermatitis evolving from contact dermatitis of the hands associated with exposure to dendrimers. Contact Dermatitis. 2011;59:122–3.

    Article  Google Scholar 

  59. Hamman J. Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar Drugs. 2010;8:1305–22.

    Article  PubMed  CAS  Google Scholar 

  60. Canal C, Aparicio RM, Vilchez A, Esquena J, García-Celma MJ. Drug Delivery Properties of Macroporous Polystyrene Solid Foams. J Pharm Pharm Sci. 2012;15:197–207.

    PubMed  CAS  Google Scholar 

  61. Luo Z, Zou C, Syed S, Syarbaini L, Chen G. Highly monodisperse chemically reactive sub-micrometer particles: polymer colloidal photonic crystals. Colloid Polym Sci. 2011;290:141–50.

    Article  Google Scholar 

  62. Xia T, et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006;6:1794–807.

    Article  PubMed  CAS  Google Scholar 

  63. Poplawski T, et al. Cytotoxicity and genotoxicity of glycidyl methacrylate. Chem Biol Interact. 2009;180:69–78.

    Article  PubMed  CAS  Google Scholar 

  64. Manna SK, et al. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription. Nano Lett. 2005;5:1676–84.

    Article  PubMed  CAS  Google Scholar 

  65. Schipper M, et al. A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotechnol. 2008;3:216–21.

    Article  PubMed  CAS  Google Scholar 

  66. Sayes C, Marchione A, Reed KL, Warheit DB. Comparative pulmonary toxicity assessments of C60 water suspensions in rats: Few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett. 2007;7:2399–406.

    Article  PubMed  CAS  Google Scholar 

  67. Circu M, Aw T. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med. 2009;48:749–62.

    Article  Google Scholar 

  68. Hamanaka R, Chandel N. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci. 2010;35:505–13.

    Article  PubMed  CAS  Google Scholar 

  69. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13.

    Article  PubMed  CAS  Google Scholar 

  70. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. Oxford: Oxford University Press; 2007. p. 1–677.

    Google Scholar 

  71. Nauseef WM. How human neutrophils kill and degrade microbes: an integrated view. Immunol Rev. 2007;219:88–102.

    Article  PubMed  CAS  Google Scholar 

  72. Winterbourn C. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol. 2008;4:278–86.

    Article  PubMed  CAS  Google Scholar 

  73. Forman HJ. Use and abuse of exogenous H2O2 in studies of signal transduction. Free Radic Biol Med. 2007;42:926–32.

    Article  PubMed  CAS  Google Scholar 

  74. Xia T, et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2008;2:2121–34.

    Article  PubMed  CAS  Google Scholar 

  75. Song W, et al. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol Lett. 2010;199:389–97.

    Article  PubMed  CAS  Google Scholar 

  76. Riedl MA, Nel AE. Importance of oxidative stress in the pathogenesis and treatment of asthma. Curr Opin Allergy Clin Immunol. 2008;8:49–56.

    Article  PubMed  CAS  Google Scholar 

  77. Pujalté I, et al. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol. 2011;3:8–10.

    Google Scholar 

  78. Simkó M, Mattsson MO. Risks from accidental exposures to engineered nanoparticles and neurological health effects: A critical review. Part Fibre Toxicol. 2010;7:42.

    Article  PubMed  Google Scholar 

  79. Sarkar A, Das J, Manna P, Sil P. Nano-copper induces oxidative stress and apoptosis in kidney via both extrinsic and intrinsic pathways. Toxicology. 2011;290:209–18.

    Article  CAS  Google Scholar 

  80. Barillet S, et al. Toxicological consequences of TiO2, SiC nanoparticles and multi-walled carbon nanotubes exposure in several mammalian cell types: an in vitro study. J Nanoparticle Res. 2010;12:61–73.

    Article  CAS  Google Scholar 

  81. Heng B, et al. Evaluation of the cytotoxic and inflammatory potential of differentially shaped zinc oxide nanoparticles. Arch Toxicol. 2011;85:1517–28.

    Article  PubMed  CAS  Google Scholar 

  82. Yin R, et al. Acute lung inflammation in response to carbon nanoparticle exposure is augmented in the absence of NF-KB. Germany: ERS; 2010.

    Google Scholar 

  83. •• Zhou D, et al. Nanoparticle-induced unfolding of fibrogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol. 2010;6:39–44. This paper showed that the binding of certain nanoparticles to fibrinogen in plasma offers an alternative mechanism to the more commonly described role of oxidative stress in the inflammatory response to nanomaterials.

    Google Scholar 

  84. Pasparakis M. Regulation of tissue homeostasis by NF-kB signalling: implications for inflammatory diseases. Nat Rev Immunol. 2009;9:778–88.

    Article  PubMed  CAS  Google Scholar 

  85. Sitrin RG, Pan PM, Srikanth S, Todd 3rd RF. Fibrinogen activates NF-kB transcription factors in mononuclear phagocytes. J Immunol. 1998;161:1462–70.

    PubMed  CAS  Google Scholar 

  86. Masamune A, et al. Fibrinogen induces cytokine and collagen production in pancreatic stellate cells. Gut. 2009;58:550–9.

    Article  PubMed  CAS  Google Scholar 

  87. Li Q, Verma IM. NF-kB regulation in the immune system. Nat Rev Immunol. 2009;2:725–34.

    Article  Google Scholar 

  88. Pazin MJ, et al. NF-kappa B-mediated chromatin reconfiguration and transcriptional activation of the HIV-1 enhancer in vitro. Genes Dev. 1996;10:37–49.

    Article  PubMed  CAS  Google Scholar 

  89. Silverman N, Maniatis T. NF-κB signaling pathways in mammalian and insect innate immunity. Genes Dev. 2001;15:2321–42.

    Article  PubMed  CAS  Google Scholar 

  90. Ghosh S. May. M.J. Kopp EB. NF-kB and Rel proteins: Evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998;16:225–60.

    Article  PubMed  CAS  Google Scholar 

  91. Hayden MS, Ghosh S. Shared principles in NF-kB signaling. Cell. 2008;132:344–62.

    Article  PubMed  CAS  Google Scholar 

  92. Hayden MS, Ghosh S. NF-kB in immunobiology. Cell Res. 2011;21:223–44.

    Article  PubMed  CAS  Google Scholar 

  93. Hayden MS, Ghosh S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 2012;26:203–34.

    Article  PubMed  CAS  Google Scholar 

  94. Prasad S, Ravindran J, Aggarwal BB. NF-kappaB and cancer: how intimate is this relationship. Mol Cell Biochem. 2010;336:25–37.

    Article  PubMed  CAS  Google Scholar 

  95. Dobrovolskaia M, McNeil S. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2007;2:469–78.

    Article  PubMed  CAS  Google Scholar 

  96. Tan Y, Li S, Pitt BR, Huang L. The inhibitory role of CpG immunostimulatory motifs in cationic lipid vector-mediated transgene expression in vivo. Hum Gene Ther. 1999;10:2153–61.

    Article  PubMed  CAS  Google Scholar 

  97. Mansur A, Karnik A, Frieri M. Nitric oxide production and apoptosis by gp 120. Allergy Asthma Proc. 2000;21:145–9.

    Article  PubMed  CAS  Google Scholar 

  98. Dzhindzhikhashvili M, Jaghab MA, Frieri M. Lymphadenopathy, productive cough, eosinophila and a new onset acquired immundeficiency syndrome. Allergy Asthma Proc. 2011;11:1–6.

    Google Scholar 

  99. Mansur A, Therattil J, Frieri M. An atypical case of hypogammaglobulinemia. Ann Allergy Asthma Immunol. 2000;84:583–6.

    Article  PubMed  CAS  Google Scholar 

  100. Frisella PD, Joks R, Frieri M. Transforming growth factor-beta. A Role in the upper airway and rhinosinusitis: D. Pteronyssinusi induced apoptosis with pulmonary alveolar cells. Am J Rhinol. 2011;25:231–5.

    Article  Google Scholar 

  101. Frieri M. Accelerated atherosclerosis in systemic lupus erythematosus. Role of proinflammatory cytokines and therapeutic approaches. Curr Allergy Asthma Rep. 2011;12:25–32.

    Article  Google Scholar 

  102. •• Frieri M, et al. Toll-like receptor 9 and vascular endothelial growth factor levels in human kidneys from lupus nephritis patients. J Nephrol. 2012. This is the first study that investigated the combined expression of TLR9 and VEGF, which could be an important tool for understanding the role of TLR9 and VEGF in lupus nephritis with insights into the early detection and targeted treatment.

  103. Nishanth R, Jyotsna R. Schlager, J, Hussain, S., Reddanna, P. Inflammatory responses of RAW 264.7 macrophages upon exposure to nanoparticles: role of ROS-NFκB signaling pathway. Nanotoxicology. 2011;5:502–16.

    Article  PubMed  CAS  Google Scholar 

  104. Lishko VK, et al. Regulated unmasking of the cryptic binding site for integrin aMb2 in the gC-domain of fibrinogen. Biochemistry. 2002;41:12942–51.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne Frieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syed, S., Zubair, A. & Frieri, M. Immune Response to Nanomaterials: Implications for Medicine and Literature Review. Curr Allergy Asthma Rep 13, 50–57 (2013). https://doi.org/10.1007/s11882-012-0302-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-012-0302-3

Keywords

Navigation