Skip to main content
Log in

Microcarrier bioreactor culture system promotes propagation of human intervertebral disc cells

  • Original Article
  • Published:
Irish Journal of Medical Science Aims and scope Submit manuscript

Abstract

Background

Cell-based tissue engineering has emerged as a potential therapy for intervertebral disc degeneration. However, propagating and maintaining high quantity and quality of the seed cells remains a challenge.

Aims

To investigate the feasibility of culturing human disc cells using a microcarrier bioreactor system.

Methods

Cell counts, growth patterns, cell cycles and cellular viability were examined during the course of cell cultivation and compared between the microcarrier bioreactor culture system and the conventional monolayer culture.

Results

Cultures in the microcarrier bioreactor resulted in enhanced disc cell growth and satisfactory cell viability in comparison with the conventional monolayer culture. The cells in the microcarrier bioreactor cultivation exhibited higher S phase ratios, elevated mitotic index and persistent exponential growth.

Conclusion

The microcarrier bioreactor culture system appears suitable for human disc cell propagation and may provide considerably more seeding cells for the tissue engineering process of intervertebral discs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Phillips FM, An H, Kang JD et al (2003) Biologic treatment for intervertebral disc degeneration: summary statement. Spine 28:99

    Article  Google Scholar 

  2. Chadderdon RC, Shimer AL, Gilbertson LG (2004) Advances in gene therapy for intervertebral disc degeneration. Spine J 4:341–347

    Article  Google Scholar 

  3. Walker MH, Anderson DG (2004) Molecular basis of intervertebral disc degeneration. Spine J 4:58–66

    Article  Google Scholar 

  4. Ichimura K, Tsuji H, Matsui H et al (1991) Cell culture of the intervertebral disc of rats: factors influencing culture, proteoglycan, collagen and deoxyribonucleic acid synthesis. J Spinal Disord 4:428–436

    Article  CAS  PubMed  Google Scholar 

  5. Shinmei M, Kikuchi T, Yamagishi A et al (1988) The role of interleukin-1 on proteoglycan metabolism of rabbit annulus fibrous cells cultured in vitro. Spine 13:1284–1290

    Article  CAS  PubMed  Google Scholar 

  6. Wang JY, Baer AE, Kraus VB et al (2001) Intervertebral disc cells exhibit differences in gene expression in alginate and monolayer culture. Spine 26:1747–1751

    Article  CAS  PubMed  Google Scholar 

  7. Holy C, Shciet M, Davies J (2000) Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period. J Biomed Mater Res 51:376–382

    Article  CAS  PubMed  Google Scholar 

  8. Wang D, Liu W, Han B et al (2005) The bioreactor: a powerful tool for large-scale culture of animal cells. Curr Pharm Biotechnol 6:397–403

    Article  CAS  PubMed  Google Scholar 

  9. Chu L, Robinson DK (2001) Industrial choices for protein production by large-scale cell culture. Curr Opin Biotechnol 12:180–187

    Article  CAS  PubMed  Google Scholar 

  10. Tang YJ, Li HM, Hamel JF et al (2009) Effects of dissolved oxygen tension and agitation rate on the production of heat-shock protein glycoprotein 96 by MethA tumor cell suspension culture in stirred-tank bioreactors. Bioprocess Biosyst Eng 32:475–485

    Article  CAS  PubMed  Google Scholar 

  11. Hundt B, Best C, Schlawin N et al (2007) Establishment of a mink enteritis vaccine production process in stirred-tank reactor and wave bioreactor microcarrier culture in 1–10 L scale. Vaccine 25:3987–3995

    Article  CAS  PubMed  Google Scholar 

  12. van Wezel A (1967) Growth of cell strains and primary cells on micro-carriers in homogeneous culture. Nature 216:64–65

    Article  PubMed  Google Scholar 

  13. Borg DJ, Dawson RA, Leavesley DI (2009) Functional and phenotypic characterization of human keratinocytes expanded in microcarrier culture. J Biomed Mater Res A 88:184–194

    PubMed  Google Scholar 

  14. Fernandes AM, Fernandes TG, Diogo MM et al (2007) Mouse embryonic stem cell expansion in a microcarrier-based stirred culture system. J Biotechnol 132:227–236

    Article  CAS  PubMed  Google Scholar 

  15. Malda J, Frondoza CG (2006) Microcarriers in the engineering of cartilage and bone. Trends Biotechnol 24:299–304

    Article  CAS  PubMed  Google Scholar 

  16. Tan Q, Hillinger S, van Blitterswijk CA et al (2009) Intra-scaffold continuous medium flow combines chondrocyte seeding and culture systems for tissue engineered trachea construction. Interact Cardiovasc Thorac Surg 8:27–30

    Article  PubMed  Google Scholar 

  17. Bonassar LJ, Vacanti CA (1998) Tissue engineering: the first decade and beyond. J Cell Biochem Suppl 30–31:297–303

    Article  PubMed  Google Scholar 

  18. Sittinger M, Hutmacher DW, Risbud MV et al (2004) Current strategies for cell delivery in cartilage and bone regeneration. Curr Opin Biotechnol 15:411–418

    Article  CAS  PubMed  Google Scholar 

  19. Sittinger M, Schultz O, Keyszer G et al (1997) Artificial tissues in perfusion culture. Int J Artif Organs 20:57–62

    CAS  PubMed  Google Scholar 

  20. Abranches E, Bekman E, Henrique D et al (2007) Expansion of mouse embryonic stem cells on microcarriers. Biotechnol Bioeng 96:1211–1221

    Article  CAS  PubMed  Google Scholar 

  21. Liu JY, Hafner J, Dragieva G (2006) A novel bioreactor microcarrier cell culture system for high yields of proliferating autologous human keratinocytes. Cell Transplant 15:435–443

    Article  PubMed  Google Scholar 

  22. Akins RE, Gratton K, Quezada E et al (2007) Gene expression profile of bioreactor-cultured cardiac cells: activation of morphogenetic pathways for tissue engineering. DNA Cell Biol 26:425–434

    Article  CAS  PubMed  Google Scholar 

  23. Liu JY, Hafner J, Dragieva G (2004) Bioreactor microcarrier cell culture system (Bio-MCCS) for large-scale production of autologous melanocytes. Cell Transplant 13:809–816

    Article  PubMed  Google Scholar 

  24. Malda J, van den Brink P, Meeuwse P et al (2004) The effect of oxygen tension on adult articular chondrocytes in microcarrier bioreactor culture. Tissue Eng 10:987–994

    CAS  PubMed  Google Scholar 

  25. Sa Santos S, Fonseca LL, Monteiro MA (2005) Culturing primary brain astrocytes under a fully controlled environment in a novel bioreactor. J Neurosci Res 79:26–32

    Article  PubMed  Google Scholar 

  26. Zayzafoon M, Gathings WE, McDonald JM (2004) Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis. Endocrinology 145:2421–2432

    Article  CAS  PubMed  Google Scholar 

  27. Meyers VE, Zayzafoon M, Douglas JT et al (2005) RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity. J Bone Miner Res 20:1858–1866

    Article  CAS  PubMed  Google Scholar 

  28. Malda J, van Blitterswijk CA, Grojec M et al (2003) Expansion of bovine chondrocytes on microcarriers enhances redifferentiation. Tissue Eng 9:939–948

    Article  CAS  PubMed  Google Scholar 

  29. Ohya Y, Matsunami H, Yamabe E et al (2003) Cell attachment and growth on films prepared from poly (depsipeptide-co-lactide) having various functional groups. J Biomed Mater Res A 65:79–88

    Article  PubMed  Google Scholar 

  30. Curran SJ, Chen R, Curran JM et al (2005) Expansion of human chondrocytes in an intermittent stirred flow bioreactor, using modified biodegradable microspheres. Tissue Eng 11:1312–1322

    Article  CAS  PubMed  Google Scholar 

  31. Williams C, Wick TM (2004) Perfusion bioreactor for small diameter tissue-engineered arteries. Tissue Eng 10:930–941

    Article  CAS  PubMed  Google Scholar 

  32. Godbey WT, Atala A (2002) In vitro systems for tissue engineering. Ann NY Acad Sci 961:10–26

    Article  CAS  PubMed  Google Scholar 

  33. Ratcliffe A, Niklason LE (2002) Bioreactors and bioprocessing for tissue engineering. Ann NY Acad Sci 961:210–215

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Nora Zacharias and Heath Edward Misak of Wichita State University for their critical reading and editing of the manuscript. This study was partially supported by the Shandong University, Jinan, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-F. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Ning, B., Jia, T. et al. Microcarrier bioreactor culture system promotes propagation of human intervertebral disc cells. Ir J Med Sci 179, 529–534 (2010). https://doi.org/10.1007/s11845-010-0537-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-010-0537-8

Keywords

Navigation