Skip to main content

Advertisement

Log in

Effect of Temperature Ramp Rate on the Morphology, Phase and Adhesion Strength of Ag-Ta2O5 Thin Film

  • Advances in Surface Engineering
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The short life of coatings layered on a SS 316L substrate can cause severe problems resulting from the weak crystallization of the film phase and low adhesion strength of the coating on the substrate. In this work, reactive magnetron sputtering is utilized to fabricate durable Ag/Ta2O5 nanocomposite coatings for surgical tool applications. A 5.74-µm-thick Ag/Ta2O5 nanocomposite coating was deposited on the SS 316L substrate. The homogeneously distributed as-deposited nanoparticles increased the total surface area for antibacterial activity. Post-thermal treatment at 500°C was conducted at temperature ramp rates of 2°C/min and 5°C/min. Microstructural, elemental, phase, structure and adhesion strength analyses were performed to characterize the deposited films. A larger amount of segregated Ag particles per area was achieved at a temperature ramp rate of 2°C/min, which led to comparably higher adhesion strength. The adhesion strength of the film annealed at 2°C/min improved by 271% compared to the as-deposited film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Pradhaban, G.S. Kaliaraj, and V. Vishwakarma, Prog. Biomater. 3, 123 (2014).

    Article  Google Scholar 

  2. N. Eslami, R. Mahmoodian, M. Hamdi, N.M. Khatir, M.K. Herliansyah, and A.R. Rafieerad, JOM 69, 691 (2017).

    Article  Google Scholar 

  3. A.A. Oshkour, S. Pramanik, M. Mehrali, Y.H. Yau, F. Tarlochan, and N.A.A. Osman, J. Mech. Behav. Biomed. Mater. 49, 321 (2015).

    Article  Google Scholar 

  4. C. Dominguez-Wong, G. Loredo-Becerra, C. Quintero-González, M. Noriega-Treviño, M. Compeán-Jasso, N. Niño-Martínez, I. DeAlba-Montero, and F. Ruiz, Mater. Lett. 134, 103 (2014).

    Article  Google Scholar 

  5. J.A. Otter, S. Yezli, and G.L. French, Infect. Control Hosp. Epidemiol. 32, 687 (2011).

    Article  Google Scholar 

  6. R.M. Donlan, Emerg. Infect. Dis. 8, 881 (2002).

    Article  Google Scholar 

  7. A. Darbandi, E. Gottardo, J. Huff, M. Stroscio, and T. Shokuhfar, JOM 70, 566 (2018).

    Article  Google Scholar 

  8. S.A. Alves, A.L. Rossi, A.R. Ribeiro, J. Werckmann, J.-P. Celis, L.A. Rocha, and T. Shokuhfar, Surf. Coat. Technol. 324, 153 (2017).

    Article  Google Scholar 

  9. H. Ge, J. Zhang, Y. Yuan, J. Liu, R. Liu, and X. Liu, Prog. Organ. Coat. 106, 20 (2017).

    Article  Google Scholar 

  10. B. Spellberg and D.N. Gilbert, Clin. Infect. Dis. 59, S71 (2014).

    Article  Google Scholar 

  11. D. Colas, E. Finot, S. Flouriot, S. Forest, M. Mazière, and T. Paris, JOM (2019). https://doi.org/10.1007/s11837-019-03539-z.

    Article  Google Scholar 

  12. S.A. Skoog, G. Kumar, P.L. Goering, B. Williams, J. Stiglich, and R.J. Narayan, JOM 68, 1672 (2016).

    Article  Google Scholar 

  13. C. Köse and R. Kacar, Int. J. Electrochem. Sci. 11, 2762 (2016).

    Article  Google Scholar 

  14. S.T. Bah, C.O. Ba, M. D’Auteuil, P. Ashrit, L. Sorelli, and R. Vallée, Thin Solid Films 615, 351 (2016).

    Article  Google Scholar 

  15. W. Jin, G. Wang, Z. Lin, H. Feng, W. Li, X. Peng, A.M. Qasim, and P.K. Chu, Corros. Sci. 114, 45 (2017).

    Article  Google Scholar 

  16. H.-L. Huang, Y.-Y. Chang, H.-J. Chen, Y.-K. Chou, C.-H. Lai, and M.Y. Chen, J. Vac. Sci. Technol., A 32, 02B117 (2014).

    Article  Google Scholar 

  17. Y. Leng, J. Chen, P. Yang, H. Sun, J. Wang, and N. Huang, Nucl. Instrum. Methods B 242, 30 (2006).

    Article  Google Scholar 

  18. A.R. Shahverdi, A. Fakhimi, H.R. Shahverdi, and S. Minaian, Nanomed. Nanotechnol. Biol. Med. 3, 168 (2007).

    Article  Google Scholar 

  19. M. Guzman, J. Dille, and S. Godet, Nanomedicine 8, 37 (2012).

    Article  Google Scholar 

  20. S.J. Soenen, W.J. Parak, J. Rejman, and B. Manshian, Chem. Rev. 115, 2109 (2015).

    Article  Google Scholar 

  21. M.J. Hajipour, K.M. Fromm, A.A. Ashkarran, D.J. de Aberasturi, I.R. de Larramendi, T. Rojo, V. Serpooshan, W.J. Parak, and M. Mahmoudi, Trends Biotechnol. 30, 499 (2012).

    Article  Google Scholar 

  22. S. Hussain, K. Hess, J. Gearhart, K. Geiss, and J. Schlager, Toxicol. In Vitro 19, 975 (2005).

    Article  Google Scholar 

  23. A. Burd, C.H. Kwok, S.C. Hung, H.S. Chan, H. Gu, W.K. Lam, and L. Huang, Wound Repair Regen. 15, 94 (2007).

    Article  Google Scholar 

  24. M.A. Shevtsov, N.M. Yudintceva, M.I. Blinova, I.V. Voronkina, D.N. Suslov, O.V. Galibin, D.V. Gavrilov, M. Akkaoui, G. Raykhtsaum, and A.V. Albul, J. Biomed. Mater. Res. B 107, 169 (2018).

    Article  Google Scholar 

  25. A. Lankoff, W.J. Sandberg, A. Wegierek-Ciuk, H. Lisowska, M. Refsnes, B. Sartowska, P.E. Schwarze, S. Meczynska-Wielgosz, M. Wojewodzka, and M. Kruszewski, Toxicol. Lett. 208, 197 (2012).

    Article  Google Scholar 

  26. A.R. Gliga, S. Skoglund, I.O. Wallinder, B. Fadeel, and H.L. Karlsson, Part. Fibre Toxicol. 11, 11 (2014).

    Article  Google Scholar 

  27. A. Popa, G. Stan, M. Enculescu, C. Tanase, D. Tulyaganov, and J. Ferreira, J. Mech. Behav. Biomed. Mater. 51, 313 (2015).

    Article  Google Scholar 

  28. Y. Li, Y. Qian, G. Zhao, J. Xu, and M. Li, Ceram. Int. 43, 6622 (2017).

    Article  Google Scholar 

  29. Y. Khaydukov, R. Morari, D. Lenk, V. Zdravkov, D. Merkel, B.-K. Seidlhofer, C. Miiller, H.A.K. von Nidda, T. Keller, and R. Steitz, J. Phys: Conf. Ser. 862, 012013 (2017).

    Google Scholar 

  30. R. Alias, R. Mahmoodian, M.H.A. Shukor, B.S. Yew, and M. Muhamad, AIP Conf. Proc. 1948, 020003 (2018).

    Article  Google Scholar 

  31. L. Incerti, A. Rota, S. Valeri, A. Miguel, J. García, R. Rodríguez, and J. Osés, Vacuum 85, 1108 (2011).

    Article  Google Scholar 

  32. C. Muratore, A.A. Voevodin, J. Hu, J.G. Jones, and J.S. Zabinski, Surf. Coat. Technol. 200, 1549 (2005).

    Article  Google Scholar 

  33. P. Basnyat, B. Luster, Z. Kertzman, S. Stadler, P. Kohli, S. Aouadi, J. Xu, S. Mishra, O. Eryilmaz, and A. Erdemir, Surf. Coat. Technol. 202, 1011 (2007).

    Article  Google Scholar 

  34. S.C. Velasco, A. Cavaleiro, and S. Carvalho, Prog. Mater Sci. 84, 158 (2016).

    Article  Google Scholar 

  35. D.-S. Wuu, R.-H. Horng, W.-H. Tseng, W.-T. Lin, and C.-Y. Kung, J. Cryst. Growth 220, 235 (2000).

    Article  Google Scholar 

  36. V. Zhabrev, Y.A. Bystrov, L. Efimenko, A. Komlev, V. Baryshnikov, A. Kolomiitsev, and V. Shapovalov, Tech. Phys. Lett. 30, 396 (2004).

    Article  Google Scholar 

  37. R. Alias, R. Mahmoodian, M. Rizwan, and M.H. Abd Shukor, J. Adhes. Sci. Technol. 33, 1626 (2019).

    Article  Google Scholar 

  38. R. Alias, R. Mahmoodian, and M.H. Abd Shukor, Int. J. Adhes. Adhes. 92, 89 (2019).

    Article  Google Scholar 

  39. M. Bruce, I. McConnell, R. Will, and J. Ironside, Lancet 358, 208 (2001).

    Article  Google Scholar 

  40. S. Kumar, P. Bhushan, and S. Bhattacharya, Coatings on Surgical Tools and How to Promote Adhesion of Bio-Friendly Coatings on Their Surfaces (New York: Wiley, 2017).

    Book  Google Scholar 

  41. M. Othman, A. Bushroa, and W.N.R. Abdullah, J. Adhes. Sci. Technol. 29, 569 (2015).

    Article  Google Scholar 

  42. U. Farid, H.U. Khan, M. Avdeev, S. Injac, and B.J. Kennedy, J. Solid State Chem. 258, 859 (2018).

    Article  Google Scholar 

  43. M. Hassan, A. Bushroa, and R. Mahmoodian, Surf. Coat. Technol. 277, 216 (2015).

    Article  Google Scholar 

  44. T. Hryniewicz and R. Rokicki, World Sci. News 96, 35 (2018).

    Google Scholar 

  45. M. Boi, M. Bianchi, A. Gambardella, F. Liscio, S. Kaciulis, A. Visani, M. Barbalinardo, F. Valle, M. Iafisco, and L. Lungaro, RSC Adv. 5, 78561 (2015).

    Article  Google Scholar 

  46. J. Siegel, M. Polívková, M. Staszek, K. Kolářová, S. Rimpelová, and V. Švorčík, Mater. Lett. 145, 87 (2015).

    Article  Google Scholar 

  47. U.Z. Mohamad Zaidi, A.R. Bushroa, R.R. Ghahnavyeh, and R. Mahmoodian, Pigment Resin. Technol. (2018). https://doi.org/10.1108/PRT-03-2018-0026.

    Article  Google Scholar 

  48. Z. Umi and R. Mahmoodian, IOP Conf. Ser. Mater. Sci. Eng. 210, 012074 (2017).

    Article  Google Scholar 

  49. M. Sarraf, A. Dabbagh, B. Abdul Razak, R. Mahmoodian, B. Nasiri-Tabrizi, H.R.M. Hosseini, S. Saber-Samandari, N.H. Abu Kasim, H. Abdullah, and N.L. Sukiman, Surf. Coat. Technol. 349, 1008 (2018).

    Article  Google Scholar 

  50. B. Rahmati, E. Zalnezhad, A.A. Sarhan, Z. Kamiab, B.N. Tabrizi, and W. Abas, Ceram. Int. 41, 13055 (2015).

    Article  Google Scholar 

  51. A. Rafieerad, A. Bushroa, B. Nasiri-Tabrizi, J. Vadivelu, S. Baradaran, M. Mesbah, and M.A. Zavareh, Mater. Des. 103, 10 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Postgraduate Research Fund (PPP), Grant No: PG266-2015B and Universiti Sultan Zainal Abidin, RMIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Mahmoodian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alias, R., Mahmoodian, R. & Hamdi Abd Shukor, M. Effect of Temperature Ramp Rate on the Morphology, Phase and Adhesion Strength of Ag-Ta2O5 Thin Film. JOM 72, 697–705 (2020). https://doi.org/10.1007/s11837-019-03794-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03794-0

Navigation