Skip to main content

Advertisement

Log in

Uranium Extraction from Tailings by Dilute Alkali Pretreatment–Sulfuric Acid Leaching Technology

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Preliminary extraction research was carried out to develop a suitable dilute alkali pretreatment–sulfuric acid leaching process for uranium recovery from tailings containing 80 ppm uranium. The effects of alkali concentration, liquid-to-solid ratio, stirring speed and leaching time on uranium content in the leaching residues were investigated. The results showed that the leaching efficiency of dilute alkali pretreatment–sulfuric acid leaching is superior to direct acid leaching. Only 13 ppm and 7.5 ppm of uranium remained in tailings by using NaOH and Na2CO3, respectively, with an alkali concentration of 10 g/L, a liquid-to-solid ratio of 20, and an agitation of 400 rpm for 2 h. In addition, uranium liberation was significantly promoted by forming pores during the leaching process. This technology has advantages of low energy consumption, high leaching efficiency and less impurity production compared to traditional direct acid leaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Abhilash, K.D. Singh, V. Mehta, K.B.D. Pandey, and V.M. Pandey, Hydrometallurgy 95, 70 (2009).

    Article  Google Scholar 

  2. W.L. Xing, A.J. Wang, Q. Yan, and S. Chen, Ann. Nucl. Energy 110, 1156 (2017).

    Article  Google Scholar 

  3. J.Q. Pan, C. Zhang, Y.Z. Sun, Z.H. Wang, and Y.S. Yang, Electrochem. Commun. 19, 70 (2012).

    Article  Google Scholar 

  4. K. Inoue and S. Alam, JOM 65, 1341 (2013).

    Article  Google Scholar 

  5. M. Omran, T. Fabritius, A.M. Elmahdy, N.A. Abdel-Khalek, and S. Gornostayev, Sep. Purif. Technol. 156, 724 (2015).

    Article  Google Scholar 

  6. C.R. Yang, W.Q. Qin, S.S. Lai, J. Wang, Y.S. Zhang, F. Jiao, L.Y. Ren, T. Zhuang, and Z.Y. Chang, Hydrometallurgy 106, 32 (2011).

    Article  Google Scholar 

  7. S.J. Zhen, Z.Q. Yan, Y.S. Zhang, J. Wang, M. Campbell, and W.Q. Qin, Hydrometallurgy 96, 337 (2009).

    Article  Google Scholar 

  8. Y. Meguro, Z. Yoshida, O. Tomioka, Y. Enokida, and I. Yamamoto, J. Supercrit. Fluids 31, 141 (2004).

    Article  Google Scholar 

  9. N. Dhawan, M.S. Safarzadeh, J.D. Miller, S. Moats, and R.K. Rajamani, Miner. Eng. 41, 53 (2013).

    Article  Google Scholar 

  10. P.K. Kalsi, B.S. Tomar, K.L. Ramakumar, and V. Venugopal, J. Radioanal. Nucl. Chem. 293, 863 (2012).

    Article  Google Scholar 

  11. J. Yuan, J. Xiao, F. Li, B. Wang, Z. Yao, B. Yu, and L. Zhang, Ultrason. Sonochem. 41, 608 (2018).

    Article  Google Scholar 

  12. Y.S. Ladola, S. Chowdhury, S.B. Roy, and A.B. Pandit, Desalin. Water Treat. 52, 407 (2014).

    Article  Google Scholar 

  13. B. Joseph, K.A. Venkatesan, K. Nagarajan, T.G. Srinivasan, and P.R. Vasudeva Rao, J. Radioanal. Nucl. Chem. 287, 167 (2011).

    Article  Google Scholar 

  14. B.Q. Lu, M. Li, X.W. Zhang, C.M. Huang, X.Y. Wu, and Q. Fang, J. Hazard. Mater. 343, 255 (2018).

    Article  Google Scholar 

  15. Y.F. Zhao and J. Chen, J. Nucl. Mater. 373, 53 (2008).

    Article  Google Scholar 

  16. V. Madakkaruppan, A. Pius, S.T.N. Giri, and C. Sarbajna, J. Hazard. Mater. 313, 9 (2016).

    Article  Google Scholar 

  17. N. Lippiatt and F. Bourgeois, Miner. Eng. 31, 71 (2012).

    Article  Google Scholar 

  18. M.J. Lottering, L. Lorenzen, N.S. Phala, J.T. Smit, and G.A. Schalkwyk, Miner. Eng. 21, 16 (2008).

    Article  Google Scholar 

  19. F.K. Crundwel, Hydrometallurgy 149, 11 (2014).

    Google Scholar 

  20. C.R. Edwards and A.J. Oliver, JOM 52, 12 (2000).

    Article  Google Scholar 

  21. D. Lunt, P. Boshoff, M. Boylett, and Z. El-Ansary, J. South. Afr. Inst. Min. Metall. 107, 419 (2017).

    Google Scholar 

  22. B.J. Youlton and J.A. Kinnaird, Miner. Eng. 52, 62 (2013).

    Article  Google Scholar 

  23. G.M. Ritcey and A.W. Ashbrook, Solvent Extraction: Principles and Applications to Process Metallurgy (Amsterdam: Elsevier, 1984).

    Google Scholar 

  24. B. Zhang, M. Li, X.W. Zhang, and J. Huang, JOM 68, 1990 (2016).

    Article  Google Scholar 

  25. E.N. Malenga, A.F. Mulaba-Bafubiandi, and W. Nheta, Hydrometallurgy 155, 65 (2015).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51404141, 51874180), China Postdoctoral Science Foundation (Grant No. 2015M572255), natural science foundation of Hunan Province (Grant No.2018JJ3437) and the double first class construct program of USC (2017SYL05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Li, M., Zhang, X. et al. Uranium Extraction from Tailings by Dilute Alkali Pretreatment–Sulfuric Acid Leaching Technology. JOM 70, 2746–2752 (2018). https://doi.org/10.1007/s11837-018-3127-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3127-2

Navigation