Skip to main content
Log in

Stress corrosion cracking in magnesium alloys: Characterization and prevention

  • Magnesium: Fundamental Research
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The positive environmental influence of magnesium alloy usage in transportation applications could be compromised by catastrophic fast fracture caused by stress corrosion cracking (SCC). Transgranular stress corrosion cracking (TGSCC) of AZ91 has been evaluated using the linearly increasing stress test and the constant extension rate test. The TGSCC threshold stress was 55–75 MPa in distilled water and in 5 g/L NaCl. The TGSCC velocity was 7×10−10 m/s to 5×10−9 m/s. A delayed hydride-cracking model for TGSCC was implemented using a finite element script in MATLAB and the model predictions were compared with the experiment. A key outcome is that, during steady-state TGSCC propagation, a high dynamic hydrogen concentration is expected to build up behind the crack tip. In this paper, recommendations are given for preventing SCC of magnesium alloys in service. One of the most important recommendations might be that the total stress in service should be below a threshold level, which, in the absence of other data, could be estimated to be ∼50% of the tensile yield strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Song and A. Atrens, “Corrosion Mechanisms of Magnesium Alloys,” Advanced Engineering Materials, 1 (1999), pp. 11–33.

    Article  CAS  Google Scholar 

  2. G.L. Song and A. Atrens, “Understanding Magnesium Corrosion Mechanism: a Framework for Improved Alloy Performance,” Advanced Engineering Materials, 5 (2003), p. 837.

    Article  CAS  Google Scholar 

  3. G. Song and A. Atrens, “Recent Insights into the Mechanism of Magnesium Corrosion and Research Suggestions,” Advanced Engineering Materials, 9 (2007), pp. 177–183.

    Article  CAS  Google Scholar 

  4. A. Atrens and W. Dietzel, “The Negative Difference Effect and Unipositive Mg+”, Advanced Engineering Materials 9 (2007) PP. 292–297.

    Article  CAS  Google Scholar 

  5. J.X. Jia, G.L. Song, and A. Atrens, “Influence of Geometry on Galvanic Corrosion of AZ91D Coupled to Steel,” Corrosion Science, 48 (2006), pp. 2133–2153.

    Article  CAS  Google Scholar 

  6. J.X. Jia, G. Song, and A. Atrens, “Experimental Measurement and Computer Simulation of Galvanic Corrosion of Magnesium Coupled to Steel,” Advanced Engineering Materials, 9 (2007), pp. 65–74.

    Article  CAS  Google Scholar 

  7. G.L. Song, A. Atrens, and M. Dargusch, “Influence of Microstructure on the Corrosion of Diecast AZ91D,” Corrosion Science, 41 (1999), pp. 249–273.

    Article  CAS  Google Scholar 

  8. G.L. Song et al., “Corrosion Behaviour of AZ21, AZ501, and AZ91 in Sodium Chloride,” Corrosion Science, 40 (1998), pp. 1769–1791.

    Article  CAS  Google Scholar 

  9. G.L. Song et al., “Electrochemical Corrosion of Pure Magnesium in 1N NaCl,” Corrosion Science, 39 (1997), pp. 855–875.

    Article  CAS  Google Scholar 

  10. G.L. Song et al., “The Anodic Dissolution of Magnesium in Chloride and Sulphate Solutions,” Corrosion Science, 39 (1997), pp. 1981–2004.

    Article  CAS  Google Scholar 

  11. Z. Shi, G. Song, and A. Atrens, “The Corrosion Performance of Anodized Magnesium Alloys,” in Ref. 5, pp. 3531–3546.

    Article  CAS  Google Scholar 

  12. Z. Shi, G.L. Song, and A. Atrens, “Influence of Anodizing Current on the Corrosion Resistance of Anodized AZ91D Magnesium Alloy,” in Ref. 5, pp. 1939–1959.

    Article  CAS  Google Scholar 

  13. Z. Shi, G.L. Song, and A. Atrens, “Corrosion Resistance of Anodized Single-Phase Mg Alloys,” Surface and Coatings Technology, 201 (2006), pp. 492–500.

    Article  CAS  Google Scholar 

  14. J.X. Jia, G. Song, and A. Atrens, “Boundary Element Predictions of the Influence of the Electrolyte on the Galvanic Corrosion of AZ91D Coupled to Steel,” Materials and Corrosion, 56 (2005), pp. 259–270.

    Article  CAS  Google Scholar 

  15. J.X. Jia et al., “Simulation of Galvanic Corrosion of Magnesium Coupled to a Steel Fastener in NaCl Solution,” Materials and Corrosion, 56 (2005), pp. 468–474.

    Article  CAS  Google Scholar 

  16. Z. Shi, G. Song, and A. Atrens, “Influence of the β Phase on the Corrosion Performance of Anodized Coatings on Magnesium-Aluminum Alloys,” Corrosion Science, 47 (2005), pp. 2760–2777.

    Article  CAS  Google Scholar 

  17. A. Atrens, “Suggestions for Research Directions in Magnesium Corrosion Arising from the Wolfsburg Conference,” Advanced Engineering Materials, 6 (2004), pp. 83–84.

    Article  Google Scholar 

  18. N. Winzer et al., “A Critical Review of the Stress Corrosion Cracking (SCC) of Magnesium Alloys,” Advanced Engineering Materials, 7 (2005), pp. 659–693.

    Article  CAS  Google Scholar 

  19. N. Winzer et al., “Comparison of the Linearly Increasing Stress Test and the Constant Extension Rate Test in the Evaluation of Transgranular Stress Corrosion Cracking of Magnesium,” Materials Science and Engineering A (accepted for publication, 2007).

  20. N. Winzer et al., “Evaluation of Mg SCC using LIST and SSRT” (Presentation at the 7th International Conference on Magnesium Alloys and Their Applications, Dresden, Germany, November 2006).

  21. N. Winzer et al., “Stress Corrosion Cracking of Mg” (Invited Keynote Paper at the 3rd International Conference on Environmental Degradation of Engineering Materials, Gdansk, Poland, May 2007).

  22. R.G. Song et al., “A Study of the Stress Corrosion Cracking and Hydrogen Embrittlement of AZ31 Magnesium Alloy,” Materials Science and Engineering, 399 (2005), pp. 308–317.

    Article  Google Scholar 

  23. M.B. Kannan et al., “SCC Evaluation of Mg Alloys AZ80, ZE41, QE22 and EV21,” Materials Science and Engineering (accepted for publication, 2007).

  24. N. Winzer et al., “Evaluation of the Delayed Hydride Cracking Mechanism for Transgranular Stress Corrosion Cracking of Magnesium Alloys,” Materials Science and Engineering A, 466 (2007), pp. 18–31.

    Article  CAS  Google Scholar 

  25. A. Atrens et al., “Stress Corrosion Cracking and Hydrogen Diffusion in Magnesium,” Advanced Engineering Materials, 8 (2006), pp. 749–751.

    Article  CAS  Google Scholar 

  26. A.J. Bursle and E.N. Pugh, Mechanisms of Environment Sensitive Cracking of Materials, ed. P.R. Swann, F.P. Ford, and A.R.C. Westwood (London: Materials Society, 1977), p. 471.

    Google Scholar 

  27. D.G. Chakrapani and E.N. Pugh, Metallurgical Transactions, 6A (1975), p. 1155.

    CAS  Google Scholar 

  28. D.G. Chakrapani and E.N. Pugh, Corrosion, 31 (1975), p. 247.

    CAS  Google Scholar 

  29. D.G. Chakrapani, E.N. Pugh, 7A, Metallurgical Transactions 7A (1976) p. 173.

    CAS  Google Scholar 

  30. E.H. Pugh, J.A.S. Green, and P.W. Slattery, Fracture 1969: The Proceedings of the Second International Conference on Fracture, ed. P.L. Pratt (London: Chapman and Hall Ltd., 1969), p. 387.

    Google Scholar 

  31. K. Ebtehaj, D. Hardie, and R.N. Parkins, Corrosion Science, 28 (1993), p. 811.

    Article  Google Scholar 

  32. R.S. Stampella, R.P.M. Procter, and V. Ashworth, Corrosion Science, 24 (1984), p. 325.

    Article  CAS  Google Scholar 

  33. G.L. Makar, J. Kruger, and K. Sieradzki, Corrosion Science, 34 (1993), p. 1311.

    Article  CAS  Google Scholar 

  34. A. Atrens et al., “Linearly Increasing Stress Test (LIST) for SCC Research,” Meas. Sci. Technol., 4 (1993), pp. 1281–1292.

    Article  CAS  Google Scholar 

  35. S. Ramamurthy and A. Atrens, “The Stress Corrosion Cracking of As-Quenched 4340 and 3.5NiCrMoV Steels Under Stress Rate Control in Distilled Water at 90°C,” Corrosion Science, 34 (1993), pp. 1385–1402.

    Article  CAS  Google Scholar 

  36. Z.F. Wang and A. Atrens, “Initiation of Stress Corrosion Cracking for Pipeline Steels in a Carbonate-Bicarbonate Solution,” Metallurgical and Materials Transactions, 27A (1996), pp. 2686–2691.

    Article  CAS  Google Scholar 

  37. J. Salmond and A. Atrens, “SCC of Copper Using the Linearly Increasing Stress Test,” Scripta Metallurgica et Materialia, 26 (1992), pp. 1447–1450.

    Article  CAS  Google Scholar 

  38. A. Atrens and A. Oehlert, “Linearly Increasing Stress Test (LIST) of Carbon Steel in 4N NaNO3 and in Bayer Liquor,” J. Materials Science, 33 (1998), pp. 783–788.

    Article  CAS  Google Scholar 

  39. J. Wang and A. Atrens, “SCC Initiation for X65 Pipeline Steel in “High” pH Carbonate/Bicarbonate Solution,” Corrosion Science, 45 (2003), pp. 2199–2217.

    Article  CAS  Google Scholar 

  40. J.Q. Wang and A. Atrens, “Analysis of Service Stress Corrosion Cracking in a Natural Gas Transmission Pipeline: Active or Dormant?” Engineering Failure Analysis, 11 (2004), pp. 3–18.

    Article  CAS  Google Scholar 

  41. E. Gamboa and A. Atrens, “Material Influence on the Stress Corrosion Cracking of Rock Bolts,” Engineering Failure Analysis, 12 (2005), pp. 201–225.

    Article  CAS  Google Scholar 

  42. E. Gamboa and A. Atrens, “Environmental Influence on the Stress Corrosion Cracking of Rock Bolts,” Engineering Failure Analysis, 10 (2003), pp. 521–558.

    Article  CAS  Google Scholar 

  43. A. Oehlert and A. Atrens, “Stress Corrosion Crack Propagation in AerMet 100,” J. Mater. Sci., 33 (1998), pp. 775–781.

    Article  CAS  Google Scholar 

  44. A. Oehlert and A. Atrens, “Environmental Assisted Fracture for 4340 Steel in Water and Air of Various Humidities,” J. Mater. Sci., 32 (1997), pp. 6519–6523.

    Article  CAS  Google Scholar 

  45. A. Oehlert and A. Atrens, “The Initiation and Propagation of Stress Corrosion Cracking in AISI 4340 and 3.5 Ni-Cr-Mo-V Rotor Steel in Constant Load Tests,” Corros. Sci., 38 (1996), pp. 1159–1170.

    Article  CAS  Google Scholar 

  46. A. Oehlert and A. Atrens, “Room Temperature Creep of High Strength Steels,” Acta Metall. Mater., 42 (1994), pp. 1493–1508.

    Article  CAS  Google Scholar 

  47. W. Dietzel and K.H. Schwalbe, “Monitoring Stable Crack Growth Using a Combined A.C./D.C. Potential Drop Technique,” Z. Materialprüfung, 28(11) (1986), pp. 368–372.

    Google Scholar 

  48. W.R. Wearmouth, G.P. Dean, and R.N. Parkins, “Role of Stress in the Stress Corrosion Cracking of a Mg-Al Alloy,” Corrosion, 29(6) (1979), pp. 251–258.

    Google Scholar 

  49. S.P. Lynch and P. Trevena, “Stress Corrosion Cracking and Liquid Metal Embrittlement in Pure Magnesium,” Corrosion, 44 (1988), pp. 113–124.

    CAS  Google Scholar 

  50. M.O. Speidel et al., “Corrosion Fatigue and Stress Corrosion Crack Growth in High Strength Aluminium Alloys, Magnesium Alloys and Titanium Alloys Exposed to Aqueous Solutions,” Corrosion Fatigue: Chemistry, Mechanics and Microstructure, NACE-2 (1972), pp. 324–345.

    Google Scholar 

  51. A. Atrens and Z.F. Wang, Materials Forum, 19 (1995), p. 9.

    CAS  Google Scholar 

  52. W. Dietzel, Encyclopedia of Materials: Science and Technology, ed. K.H.J. Buschow et al. (Amsterdam: Elsevier Science Ltd., 2001), p. 8883.

    Google Scholar 

  53. R.M. Rieck, A. Atrens, and I.O. Smith, “The Role of Crack Tip Strain Rate in the Stress Corrosion Cracking of High Strength Steels in Water,” Met. Trans. A, 20A (1989), pp. 889–895.

    Article  CAS  Google Scholar 

  54. W.K. Miller, Mat. Res. Soc. Symp. Proc., 125 (1988), p. 253.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winzer, N., Atrens, A., Dietzel, W. et al. Stress corrosion cracking in magnesium alloys: Characterization and prevention. JOM 59, 49–53 (2007). https://doi.org/10.1007/s11837-007-0104-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-007-0104-6

Keywords

Navigation