Skip to main content

Advertisement

Log in

Dynamic changes in photosynthesis and chlorophyll fluorescence in Nicotiana tabacum infested by Bemisia tabaci (Middle East–Asia Minor 1) nymphs

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Bemisia tabaci Middle East–Asia Minor 1 (MEAM1) is a worldwide pest. To determine whether MEAM1 nymphs produce the same symptoms in different host plants, we measured the plant growth and chlorophyll content of tobacco and cotton plants that were infested by MEAM1 nymphs. Furthermore, to investigate the spatial and temporal changes in photosynthesis caused by MEAM1 nymphs, the net photosynthetic rate (Pn) and chlorophyll a fluorescence of local and systemic tobacco leaves were assayed at 8, 11, 14, and 20 days after MEAM1 adult removal, which represent the stages of 1st, 2nd, 3rd, and 4th instar nymphs, respectively. The results showed that MEAM1 nymph infestation reduced the plant height and internode length of tobacco at 14 and 20 days, as well as the dry weight of infested and systemic tobacco leaves. However, MEAM1 nymph infestation did not affect the plant height or internode length of cotton. Also, the dry weight and chlorophyll and carotenoid content of infested and systemic leaves of cotton plants were not influenced by MEAM1 nymph infestation. However, the contents of chlorophyll a and b and carotenoids in infested tobacco leaves decreased over time; the chlorophyll a content of systemic tobacco leaves decreased at 11, 14, and 20 days. The chlorophyll and carotenoid contents in infested and systemic leaves of cotton plants were not influenced by MEAM1 nymph infestation. In addition, the Pn of infested tobacco leaves decreased at 14 and 20 days, while the Pn in systemic tobacco leaves decreased after 11 days. The greatest decrease in performance index on absorption basis (PI ABS ) of infested and systemic tobacco leaves occurred on day 14. The fluorescence intensity at 2 ms (J peak) and 300 μs (K peak) increased on day 14, which indicates that 3rd instar nymphs caused serious damage to the primary photochemical reactions and donor side of PSII. These results suggest that MEAM1 nymph infestation had different effects on tobacco and cotton plants. The infestation caused spatial and temporal changes in photosynthesis in tobacco plants. The lower chlorophyll a content may have been related to the lower net photosynthetic rate of systemic and infested tobacco leaves. The decreased stability of the oxygen-evolving complex and the reaction center of PSII and the decrease in electron transport were the main reasons for the decrease in the level of photosynthesis in tobacco leaves caused by MEAM1 nymphs during various stages of infestation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andrews JR, Fryer MJ, Baker NR (1995) Characterization of chilling effects on photosynthetic performance of maize crops during early season growth using chlorophyll fluorescence. J Exp Bot 46(9):1195–1203. doi:10.1093/jxb/46.9.1195

    Article  CAS  Google Scholar 

  • Appenroth KJ, Stockel J, Srivastava A, Strasser RJ (2001) Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environ Pollut 115(1):49–64. doi:10.1016/s0269-7491(01)00091-4

    Article  PubMed  CAS  Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O < sub > 2 </sub > evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170(4):489–504. doi:10.1007/bf00402983

    Article  Google Scholar 

  • Blanco LR, Adamson HY, Hales DF (1992) Chlorophyll fluorescence kinetics as a measure of stress in plants infested with aphids: implications for studies of resistance. Aust J Entomol 31(3):222. doi:10.1111/j.1440-6055.1992.tb00491.x

    Article  Google Scholar 

  • Bolhar-Nordenkampf H, Long S, Baker N, Oquist G, Schreiber U, Lechner E (1989) Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Funct Ecol pp 497–514. doi:10.2307/2389624

  • Brown J, Bird J (1992) Whitefly-transmitted geminiviruses and associated disorders in the Americas and the Caribbean Basin. Plant Dis 76(3):220–225. doi:10.1094/PD-76-0220

    Article  Google Scholar 

  • Buntin DG, Gilbertz DA, Oetting RD (1993) Chlorophyll loss and gas exchange in tomato leaves after feeding injury by Bemisia tabaci (Homoptera: Aleyrodidae). J Econ Entomol 86(2):517–522

    Google Scholar 

  • Burd JD, Burton RL (1992) Characterization of plant damage caused by Russian wheat aphid (Homoptera: Aphididae). J Econ Entomol 85(5):2017–2022

    Google Scholar 

  • Burd JD, Elliott NC (1996) Changes in chlorophyll a fluorescence induction kinetics in cereals infested with Russian Wheat Aphid (Homopetra: Aphididea). J Econ Entomol 89(5):1332–1337

    Google Scholar 

  • Chen L, Yuan Y, Rong-jiang W, Fengming Y, Dunxiao H, Zhili Z (2002) The use of mitochondrial cytochrome oxidase I (mt COI) gene sequences for the identification of biotypes of Bemisia tabaci (Gennadius) in China. Acta Entomol Sinica 45(6):759–763. doi:10.3321/j.issn:0454-6296.2002.06.011

    Google Scholar 

  • Chen J, McAuslane HJ, Carle RB, Webb SE (2004) Impact of Bemisia argentifolii (Homoptera: Auchenorrhyncha: Aleyrodidae) infestation and squash silverleaf disorder on Zucchini yield and quality. J Econ Entomol 97(6):2083–2094. doi:10.1603/0022-0493-97.6.2083

    Article  PubMed  Google Scholar 

  • Christen D, Schönmann S, Jermini M, Strasser RJ, Défago G (2007) Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. Environ Exp Bot 60(3):504–514. doi:10.1016/j.envexpbot.2007.02.003

    Article  CAS  Google Scholar 

  • De Barro PJ, Liu SS, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1–19. doi:10.1146/annurev-ento-112408-085504

    Article  PubMed  Google Scholar 

  • Delatte H, Reynaud B, Granier M, Thornary L, Lett JM, Goldbach R, Peterschmitt M (2005) A new silverleaf-inducing biotype Ms of Bemisia tabaci (Hemiptera: Aleyrodidae) indigenous to the islands of the south-west Indian Ocean. Bull Entomol Res 95(01):29–35. doi:10.1079/BER2004337

    Article  PubMed  CAS  Google Scholar 

  • Dinsdale A, Cook L, Riginos C, Buckley Y, Barro PD (2010) Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann Entomol Soc Am 103(2):196–208. doi:10.1603/AN09061

    Article  Google Scholar 

  • Elisabetta G, Filippo B, Reto JS, Marcus S, Kristopher N, John S, Corrado T (2004) Ozone symptoms in leaves of woody plants in open-top chambers: ultrastructural and physiological characteristics. Physiol Plant 121(4):620–633. doi:10.1111/j.1399-3054.2004.00363.x

    Article  Google Scholar 

  • Estrada-Hernandez MG, Valenzuela-Soto JH, Ibarra-Laclette E, Delano-Frier JP (2009) Differential gene expression in whitefly Bemisia tabaci-infested tomato (Solanum lycopersicum) plants at progressing developmental stages of the insect’s life cycle. Physiol Plant 137(1):44–60. doi:10.1111/j.1399-3054.2009.01260.x

    Article  PubMed  CAS  Google Scholar 

  • Fouche A, Verhoeven R, Hewitt P, Walters M, Kriel C, DeJager J (1984) Russian aphid (Diuraphis noxia) feeding damage on wheat, related cereals and a Bromus grass species. Progress in Russian wheat aphid (Diuraphis noxia Mordv.) research in the Republic of South Africa. No. 191, Department of Agriculture, Republic of South Africa

  • Franzen LD, Gutsche AR, Heng-Moss TM, Higley LG, Sarath G, Burd JD (2007) Physiological and biochemical responses of resistant and susceptible wheat to injury by Russian wheat aphid. J Econ Entomol 100(5):1692–1703. doi:10.1603/0022-0493

    Article  PubMed  CAS  Google Scholar 

  • Gunning R, Conde B, Byrne F (1995) Resistance B biotype of Bemisia tabaci detected in Australia. Resistant Pest Management 7(1):13

    Google Scholar 

  • Haldimann P, Strasser RJ (1999) Effects of anaerobiosis as probed by the polyphasic chlorophyll a fluorescence rise kinetic in pea (Pisum sativum L.). Photosynth Res 62(1):67–83. doi:10.1023/a:1006321126009

    Article  CAS  Google Scholar 

  • Inbar M, Gerling D (2008) Plant-mediated interactions between whiteflies, herbivores, and natural enemies. Annu Rev Entomol 53:431–448. doi:10.1146/annurev.ento.53.032107.122456

    Article  PubMed  CAS  Google Scholar 

  • Jiang CD, Gao HY, Zou Q (2003) Changes of donor and acceptor side in photosystem 2 complex induced by iron deficiency in attached soybean and maize leaves. Photosynthetica 41(2):267–271. doi:10.1023/b:phot.0000011960.95482.91

    Article  CAS  Google Scholar 

  • Jimenez DR, Yokomi RK, Mayer RT, Shapiro JP (1995) Cytology and physiology of silverleaf whitefly-induced squash Silverleaf. Physiol Mol Plant Pathol 46(3):227–242. doi:10.1006/pmpp.1995.1018

    Article  Google Scholar 

  • Kempema LA, Cui X, Holzer FM, Walling LL (2007) Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiol 143 (2):849-865. doi:10.1104/pp.106.090662

    Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349. doi:10.1146/annurev.pp.42.060191.001525

    Article  CAS  Google Scholar 

  • Larson KC (1998) The impact of two gall-forming arthropods on the photosynthetic rates of their hosts. Oecologia 115(1–2):161–166. doi:10.1007/s004420050503

    Article  Google Scholar 

  • Lautner S, Grams TE, Matyssek R, Fromm J (2005) Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiol 138(4):2200–2209

    Article  PubMed  CAS  Google Scholar 

  • Li R, Rimmer R, Buchwaldt L, Sharpe AG, Séguin-Swartz G, Hegedus DD (2004) Interaction of Sclerotinia sclerotiorum with Brassica napus: cloning and characterization of endo- and exo-polygalacturonases expressed during saprophytic and parasitic modes. Fungal Genet Biol 41(8):754–765. doi:10.1016/j.fgb.2004.03.002

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophyll Fluorescence Signatures Of Leaves During The Autumnal Chlorophyll Breakdown. J Plant Physiol 131(1–2):101–110. doi:10.1016/S0176-1617(87)80271-7

    Article  CAS  Google Scholar 

  • Lima L, Campos L, Moretzsohn M, Návia D, De Oliveira M (2002) Genetic diversity of Bemisia tabaci (Genn.) populations in Brazil revealed by RAPD markers. Genet Mol Biol 25:217–224. doi:10.1590/S1415-47572002000200016

    Article  CAS  Google Scholar 

  • Lin TB, Schwartz A, Saranga Y (1999a) Photosynthesis and productivity of cotton under silverleaf whitefly stress. Crop Sci 39(1):174–184. doi:10.2135/cropsci1999.0011183X003900010028x

    Article  Google Scholar 

  • Lin TB, Schwartz L, Saranga Y (1999b) Non-stomatal factors limit cotton photosynthesis under silverleaf whitefly stress. Physiol Plant 107(3):303–311. doi:10.1034/j.1399-3054.1999.100307.x

    Article  CAS  Google Scholar 

  • Lin TB, Wolf S, Schwartz A, Saranga Y (2000) Silverleaf whitefly stress impairs sugar export from cotton source leaves. Physiol Plant 109(3):291–297. doi:10.1034/j.1399-3054.2000.100310.x

    Article  CAS  Google Scholar 

  • Liu Z, Yang C, Jia S, Zhang P, Xie L, Xie L, Lin Q, Wu Z (2008) First report of ageratum yellow vein virus causing tobacco leaf curl disease in Fujian Province, China. Plant Dis 92(1):177. doi:10.1094/PDIS-92-1-0177B

    Article  Google Scholar 

  • Macedo TB, Bastos CS, Higley LG, Ostlie KR, Madhavan S (2003a) Photosynthetic responses of soybean to soybean aphid (Homoptera: Aphididae) injury. J Econ Entomol 96(1):188–193. doi:10.1603/0022-0493-96.1.188

    Article  PubMed  CAS  Google Scholar 

  • Macedo TB, Higley LG, Ni X, Quisenberry SS (2003b) Light activation of Russian wheat aphid-elicited physiological responses in susceptible wheat. J Econ Entomol 96(1):194–201. doi:10.1603/0022-0493-96.1.194

    Article  PubMed  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence: a practical guide. J Exp Bot 51(345):659–668. doi:10.1093/jexbot/51.345.659

    Article  PubMed  CAS  Google Scholar 

  • McAuslane HJ, Chen J, Carle RB, Schmalstig J (2004) Influence of Bemisia argentifolii (Homoptera: Aleyrodidae) infestation and squash silverleaf disorder on zucchini seedling growth. J Econ Entomol 97(3):1096–1105. doi:10.1603/0022-0493

    Article  PubMed  CAS  Google Scholar 

  • Nabity PD, Zavala JA, DeLucia EH (2009) Indirect suppression of photosynthesis on individual leaves by arthropod herbivory. Ann Bot 103(4):655–663. doi:10.1093/aob/mcn127

    Article  PubMed  CAS  Google Scholar 

  • Öquist G, Malmberg G (1989) Light and temperature dependent inhibition of photosynthesis in frost-hardened and un-hardened seedlings of pine. Photosynth Res 20(3):261–277. doi:10.1007/bf00034069

    Google Scholar 

  • Oukarroum A, Madidi SE, Schansker G, Strasser RJ (2007) Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ Exp Bot 60(3):438–446. doi:10.1016/j.envexpbot.2007.01.002

    Article  CAS  Google Scholar 

  • Parry W (1974) Damage caused by the green spruce aphid to Norway and Sitka spruce needles. Ann Appl Biol 77(2):113–120. doi:10.1111/j.1744-7348.1974.tb06879.x

    Article  Google Scholar 

  • Perring T, Cooper A, Kazmer D, Shields C, Shields J (1991) New strain of sweetpotato whitefly invades California vegetables. Calif Agric 45(6):10–12. doi:10.3733/ca.v045n06p10

    Google Scholar 

  • Rummel D, Quisenberry J (1979) Influence of thrips injury on leaf development and yield of various cotton genotypes. J Econ Entomol 72(5):706–709

    CAS  Google Scholar 

  • Schaffer B, Mason LJ (1990) Effects of scale insect herbivory and shading on net gas-exchange and growth of a subtropical tree species (Guaiacum-Sanctum L.). Oecologia 84(4):468–473. doi:10.1007/BF00328162

    Google Scholar 

  • Schuster D, Stansly P, Polston J (1996) Expressions of plant damage by Bemisia. In: Gerling D, Mayer R (eds) Bemisia 1995: taxonomy, biology, damage control and management. Andover, Hants, pp 153–166

    Google Scholar 

  • Shapiro JP (1996) Insect-plant interactions and expression of disorders induced by the silverleaf whitefly, Bemisia argentifolii. Bemisia: 1995. Taxonomy, biology, damage, control and management

  • Srivastava A, Guissé B, Greppin H, Strasser RJ (1997) Regulation of antenna structure and electron transport in Photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochimica et Biophysica Acta (BBA)−. Bioenergetics 1320(1):95–106. doi:10.1016/s0005-2728(97)00017-0

    Article  CAS  Google Scholar 

  • Strasser RJ, Srivastava A (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria*. Photochem Photobiol 61(1):32–42. doi:10.1111/j.1751-1097.1995.tb09240.x

    Article  CAS  Google Scholar 

  • Strasser R, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanisms, regulation and adaptation. Taylor and Francis, London, pp 445–483

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Berlin, pp 321–362

  • Touhidul Islam M, Shunxiang R (2009) Effect of sweetpotato whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) infestation on eggplant (Solanum melongena L.) leaf. J Pest Sci 82(3):211–215. doi:10.1007/s10340-008-0241-x

    Article  Google Scholar 

  • van de Ven WT, LeVesque CS, Perring TM, Walling LL (2000) Local and systemic changes in squash gene expression in response to silverleaf whitefly feeding. Plant Cell 12(8):1409–1423. doi:10.2307/3871139

    PubMed  Google Scholar 

  • Van Heerden PDR, Strasser RJ, Krüger GHJ (2004) Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics. Physiol Plant 121(2):239–249. doi:10.1111/j.0031-9317.2004.0312.x

    Article  PubMed  Google Scholar 

  • Xie Y, Zhou XP, Zhang ZK, Qi YJ (2002) Tobacco curly shoot virus isolated in Yunnan is a distinct species of Begomovirus. Chin Sci Bull 47(3):197–200. doi:10.1360/02tb9047

    Article  CAS  Google Scholar 

  • Xue M, Wang CX, Bi MJ, Li QL, Liu TX (2010) Induced defense by Bemisia tabaci biotype B (Hemiptera: Aleyrodidae) in tobacco against Myzus persicae (Hemiptera: Aphididae). Environ Entomol 39(3):883–891. doi:10.1603/EN09307

    Article  PubMed  Google Scholar 

  • Zvereva EL, Lanta V, Kozlov MV (2010) Effects of sap-feeding insect herbivores on growth and reproduction of woody plants: a meta-analysis of experimental studies. Oecologia 163(4):949–960. doi:10.1007/s00442-010-1633-1

    Article  PubMed  Google Scholar 

  • Zwolinski J (1990) Preliminary evaluation of the impact of the pine woolly aphid on condition and growth of pines in the southern Cape. S Afr For J 153:22–26. doi:10.1080/00382167.1990.9629028

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by a grant from the National Natural Science Foundation of China (30971906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Xue.

Additional information

Handling Editor: Henryk Czosnek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Tan, W., Xue, M. et al. Dynamic changes in photosynthesis and chlorophyll fluorescence in Nicotiana tabacum infested by Bemisia tabaci (Middle East–Asia Minor 1) nymphs. Arthropod-Plant Interactions 7, 431–443 (2013). https://doi.org/10.1007/s11829-013-9260-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-013-9260-5

Keywords

Navigation