Skip to main content

Advertisement

Log in

Vegetable oil production in vegetative plant tissues

  • Review
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Vegetable oils, which are stored in seeds as triacylglycerol (TAG), represent a valuable source of food, fuel, and industrial raw materials. Given the increasing demand for vegetable oils, it is essential to increase vegetable oil production in a sustainable manner. To boost the supply of vegetable oil, strategies to produce oils in the vegetative tissues of biomass crops are being investigated. Producing oils in leaves is challenging, due to the major role of leaves in producing sugars, via photosynthesis, that are then transported to storage tissues. Several strategies have been developed to overcome this limitation, such as increasing fatty acid and TAG biosynthesis, stabilizing lipid droplets, and reducing carbon flux to starch biosynthesis in the leaves. For example, overexpressing the WRINKLED 1 (WRI1) transcription factor, which upregulates fatty acid biosynthesis; DIACYLGLYCEROL ACYLTRANSFERASE 1 (DGAT1) enzymes, which participate in the last step of TAG biosynthesis; and oleosin, which stabilizes oil droplets and simultaneously suppressing the expression of genes encoding enzymes involved in lipogenesis and lipases led to the accumulation of significant levels of oil in leaves in tobacco, Arabidopsis, and sugarcane. To facilitate the sustainable production of biofuels and industrial raw materials, efforts are underway to modulate metabolic flux between the carbohydrate and lipid biosynthesis pathways in non-edible biomass plants that can grow on barren or reclaimed lands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alameldin H, Izadi-Darbandia A, Smith SA, Balan V, Jones AD, Sticklen M (2017) Production of seed-like storage lipids and increase in oil bodies in corn (Maize; Zea mays L.) vegetative biomass. Ind Crop Prod 108:526–534

    Article  CAS  Google Scholar 

  • An D, Kim H, Ju S, Go YS, Kim HU, Suh MC (2017) Expression of Camelina WRINKLED1 isoforms rescue the seed phenotype of the Arabidopsis wri1 mutant and increase the triacylglycerol content in tobacco leaves. Front Plant Sci. 8:34. doi:10.3389/fpls.2017.00034

    PubMed  PubMed Central  Google Scholar 

  • Andre C, Froehlich JE, Moll MR, Benning C (2007) A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis. Plant Cell 19:2006–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andre C, Haslam RP, Shanklin J (2012) Feedback regulation of plastidic acetyl-coA carboxylase by 18:1-acyl carrier protein in Brassica napus. Proc Natl Acad Sci USA 109:10107–10112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrianov V, Borisjuk N, Pogrebnyak N, Brinker A, Dixon J, Spitsin S, Flynn J, Matyszczuk P, Andryszak K, Laurelli M, Golovkin M, Koprowski H (2010) Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol J 8:277–287

    Article  CAS  PubMed  Google Scholar 

  • Banas A, Dahlqvist A, Stahl U, Lenman M, Stymne S (2000) The involvement of phospholipid:diacylglycerol acyltransferases in triacylglycerol production. Biochem Soc Trans 28:703–705

    Article  CAS  PubMed  Google Scholar 

  • Baud S, Santos Mendoza M, To A, Harsoët E, Lepiniec L, Dubreucq B (2007) WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J 50:825–838

    Article  CAS  PubMed  Google Scholar 

  • Behal RH, Lin M, Back S, Oliver DJ (2002) Role of acetyl-coenzyme a synthetase in leaves of Arabidopsis thaliana. Arch Biochem Biophys 402:259–267

    Article  CAS  PubMed  Google Scholar 

  • Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schafer HJ (2011) Oils and fats as renewable raw materials in chemistry. Angew Chem Int Edit 50:3854–3871

    Article  CAS  Google Scholar 

  • Bouvier-Nave P, Benveniste P, Oelkers P, Sturley SL, Schaller H (2000) Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase. Eur J Biochem 267:85–96

    Article  CAS  PubMed  Google Scholar 

  • Cahoon EB, Shockey JM, Dietrich CR, Gidda SK, Mullen RT, Dyer JM (2007) Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: solving bottlenecks in fatty acid flux. Curr Opin Plant Biol 10:236–244

    Article  CAS  PubMed  Google Scholar 

  • Carlsson AS, Yilmaz JL, Green AG, Stymne S, Hofvander P (2011) Replacing fossil oil with fresh oil—with what and for what? Eur J Lipid Sci Technol 113:812–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman KD, Dyer JM, Mullen RT (2012) Biogenesis and functions of lipid droplets in plants: thematic review series: lipid droplet synthesis and metabolism: from yeast to man. J Lipid Res 53:215–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA 97:6487–6492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durrett TP, Benning C, Ohlrogge J (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54:593–607

    Article  CAS  PubMed  Google Scholar 

  • Eastmond PJ (2006) SUGAR-DEPENDENT1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds. Plant Cell 18:665–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan J, Yan C, Xu C (2013a) Phospholipid:diacylglycerol acyltransferase-mediated triacylglycerol biosynthesis is crucial for protection against fatty acid-induced cell death in growing tissues of Arabidopsis. Plant J 76:930–942

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Yan C, Zhang X, Xu C (2013b) Dual role for phospholipid:diacylglycerol acyltransferase: enhancing fatty acid synthesis and diverting fatty acids from membrane lipids to triacylglycerol in Arabidopsis leaves. Plant Cell 25:3506–3518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan J, Yan C, Roston R, Shanklin J, Xu C (2014) Arabidopsis lipins, PDAT1 acyltransferase, and SDP1 triacylglycerol lipase synergistically direct fatty acids toward beta-oxidation, thereby maintaining membrane lipid homeostasis. Plant Cell 26:4119–4134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Focks N, Benning C (1998) wrinkled1: a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol 118:91–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham IA (2008) Seed storage oil mobilization. Annu Rev Plant Biol 59:115–142

    Article  CAS  PubMed  Google Scholar 

  • Grennan AK (2006) Regulation of starchmetabolism in Arabidopsis leaves. Plant Physiol 142:1343–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez ML, Whitehead L, He ZS, Gazda V, Gilday A, Kozhevnikova E, Vaistij FE, Larson TR, Graham IA (2012) A cytosolic acyltransferase contributes to triacylglycerol synthesis in sucrose-rescued Arabidopsis Seed oil catabolism mutants. Plant Physiol 160:215–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofvander P, Ischebeck T, Turesson H, Kushwaha SK, Feussner I, Carlsson AS, Andersson M (2016) Potato tuber expression of Arabidopsis WRINKLED1 increase triacylglycerol and membrane lipids while affecting central carbohydrate metabolism. Plant Biotechnol J 14:1883–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang OJ, Cho MA, Han YJ, Kim YM, Lim SH, Kim DS, Hwang I, Kim JI (2014) Agrobacterium-mediated genetic transformation of Miscanthus sinensis. Plant Cell Tiss Org 117:51–63

    Article  CAS  Google Scholar 

  • James CN, Horn PJ, Case CR, Gidda SK, Zhang D, Mullen RT, Dyer JM, Anderson RG, Chapman KD (2010) Disruption of the Arabidopsis CGI-58 homologue produces Chanarin-Dorfman-like lipid droplet accumulation in plants. Proc Natl Acad Sci USA 107:17833–17838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly AA, van Erp H, Quettier AL, Shaw E, Menard G, Kurup S, Eastmond PJ (2013) The sugar-dependent1 lipase limits triacylglycerol accumulation in vegetative tissues of Arabidopsis. Plant Physiol 162:1282–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Yamaoka Y, Ono H, Kim H, Shim D, Maeshima M, Martinoia E, Cahoon EB, Nishida I, Lee Y (2013) AtABCA9 transporter supplies fatty acids for lipid synthesis to the endoplasmic reticulum. Proc Natl Acad Sci USA 110:773–778

    Article  CAS  PubMed  Google Scholar 

  • Kim HU, Jung SJ, Lee KR, Kim EH, Lee SM, Roh KH, Kim JB (2014) Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues. FEBS Open Bio 4:25–32

    Article  CAS  Google Scholar 

  • Kim HU, Lee KR, Jung SJ, Shin HA, Go YS, Suh MC, Kim JB (2015) Senescence-inducible LEC2 enhances triacylglycerol accumulation in leaves without negatively affecting plant growth. Plant Biotechnol J 13:1346–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klaus D, Ohlrogge JB, Neuhaus HE, Dormann P (2004) Increased fatty acid production in potato by engineering of acetyl-CoA carboxylase. Planta 219:389–396

    Article  CAS  PubMed  Google Scholar 

  • Kunz HH, Scharnewski M, Feussner K, Feussner I, Flügge UI, Fulda M, Gierth M (2009) The ABC transporter PXA1 and peroxisomal beta-oxidation are vital for metabolism in mature leaves of Arabidopsis during extended darkness. Plant Cell 21:2733–2749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EJ, Oh M, Hwang JU, Li-Beisson Y, Nishida I, Lee Y (2017) Seed-specific overexpression of the pyruvate transporter BASS2 increases oil content in Arabidopsis seeds. Front Plant Sci 8:194

    PubMed  PubMed Central  Google Scholar 

  • Lefèvre C, Jobard F, Caux F, Bouadjar B, Karaduman A, Heilig R, Lakhdar H, Wollenberg A, Verret JL, Weissenbach J, Ozgüc M, Lathrop M, Prud’homme JF, Fischer J (2001) Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily Chanarin-Dorfman syndrome. Am J Hum Genet 69(5):1002–1012

    Article  PubMed  PubMed Central  Google Scholar 

  • Li N, Gugel IL, Giavalisco P, Zeisler V, Schreiber L, Soll J, Philippar K (2015) FAX1, a novel membrane protein mediating plastid fatty acid export. PLoS Biol 13:e1002053

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Guo QG, Akbar S, Zhi Y, El Tahchy A, Mitchell M, Li ZY, Shrestha P, Vanhercke T, Ral JP, Liang GL, Wang MB, White R, Larkin P, Singh S, Petrie J (2017) Genetic enhancement of oil content in potato tuber (Solanum tuberosum L.) through an integrated metabolic engineering strategy. Plant Biotechnol J 15:56–67

    Article  PubMed  Google Scholar 

  • Lu C, Xin Z, Ren Z, Miquel M, Browse J (2009) An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis. Proc Natl Acad Sci USA 106:18837–18842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makareviciene V, Gumbyte M, Yunik A, Kalenska S, Kalenskii V, Rachmetov D, Sendzikiene E (2013) Opportunities for the use of chufa sedge in biodiesel production. Ind Crop Prod 50:633–637

    Article  CAS  Google Scholar 

  • Marchive C, Nikovics K, To A, Lepiniec L, Baud S (2014) Transcriptional regulation of fatty acid production in higher plants: molecular bases and biotechnological outcomes. Eur J Lipid Sci Technol 116:1332–1343

    Article  CAS  Google Scholar 

  • Mayavan S, Subramanyam K, Jaganath B, Sathish D, Manickavasagam M, Ganapathi A (2015) Agrobacterium-mediated in planta genetic transformation of sugarcane setts. Plant Cell Rep 34:1835–1848

    Article  CAS  PubMed  Google Scholar 

  • Merrick P, Fei SZ (2015) Plant regeneration and genetic transformation in switchgrass—a review. J Integr Agric 14:483–493

    Article  CAS  Google Scholar 

  • Moon YH, Koo BC, Choi YH, Ahn SH, Bark ST, Cha YL, An GH, Kim JK, Suh SJ (2010) Development of “Miscanthus” the promising bioenergy crop. Kor J Weed Sci 30:330–339

    Article  Google Scholar 

  • Murphy DJ (2012) The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma 249:541–585

    Article  CAS  PubMed  Google Scholar 

  • Niewiadomski P, Knappe S, Geimer S, Fischer K, Schulz B, Unte US, Schneider A (2005) The Arabidopsis plastidic glucose 6-phosphate/phosphate translocator GPT1 is essential for pollen maturation and embryo sac development. Plant Cell 17:760–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Annu Rev Plant Physiol Plant Mol Biol 48:109–136

    Article  CAS  PubMed  Google Scholar 

  • Ohlrogge J, Allen D, Berguson B, Dellapenna D, Shachar-Hill Y, Stymne S (2009) Energy. driving on biomass. Science 324:1019–1020

    Article  CAS  PubMed  Google Scholar 

  • Orzechowski S (2008) Starch metabolism in leaves. Acta Biochim Pol 55:435–445

    CAS  PubMed  Google Scholar 

  • Park JW, Benatti TR, Marconi T, Yu QY, Solis-Gracia N, Mora V, da Silva JA (2015) Cold responsive gene expression profiling of sugarcane and Saccharum spontaneum with functional analysis of a cold inducible saccharum homolog of NOD26-like intrinsic protein to salt and water stress. PLoS One 10:e0125810

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrie JR, Vanhercke T, Shrestha P, El Tahchy A, White A, Zhou XR, Liu Q, Mansour MP, Nichols PD, Singh SP (2012) Recruiting a new substrate for triacylglycerol synthesis in plants: the monoacylglycerol acyltransferase pathway. PLoS One 7:e35214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabhakar V, Lottgert T, Gigolashvili T, Bell K, Flugge UI, Hausler RE (2009) Molecular and functional characterization of the plastid-localized phosphoenolpyruvate enolase (ENO1) from Arabidopsis thaliana. FEBS Lett 583:983–991

    Article  CAS  PubMed  Google Scholar 

  • Prabhakar V, Löttgert T, Geimer S, Dörmann P, Krüger S, Vijayakumar V, Schreiber L, Göbel C, Feussner K, Feussner I, Marin K, Staehr P, Bell K, Flügge UI, Häusler RE (2010) Phosphoenolpyruvate provision to plastids is essential for gametophyte and sporophyte development in Arabidopsis thaliana. Plant Cell 22:2594–2617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyc M, Cai Y, Greer MS, Yurchenko O, Chapman KD, Dyer JM, Mullen RT (2017) Turning over a new leaf in lipid droplet biology. Trends Plant Sci 22:596–609

    Article  CAS  PubMed  Google Scholar 

  • Rider SD Jr, Henderson JT, Jerome RE, Edenberg HJ, Romero-Severson J, Ogas J (2003) Coordinate repression of regulators of embryonic identity by PICKLE during germination in Arabidopsis. Plant J 35:33–43

    Article  CAS  PubMed Central  Google Scholar 

  • Rider SD Jr, Hemm MR, Hostetler HA, Li H-C, Chapple C, Ogas J (2004) Metabolic profiling of the Arabidopsis pkl mutant reveals selective derepression of embryonic traits. Planta 219:489–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruuska SA, Girke T, Benning C, Ohlrogge JB (2002) Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 14:1191–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanjaya Durrett TP, Weise SE, Benning C (2011) Increasing the energy density of vegetative tissues by diverting carbon from starch to oil biosynthesis in transgenic Arabidopsis. Plant Biotechnol J 9:874–883

    Article  CAS  PubMed  Google Scholar 

  • Sanjaya Miller R, Durrett TP, Kosma DK, Lydic TA, Muthan B, Koo AJ, Bukhman YV, Reid GE, Howe GA, Ohlrogge J, Benning C (2013) Altered lipid composition and enhanced nutritional value of Arabidopsis leaves following introduction of an algal diacylglycerol acyltransferase 2. Plant Cell 25:677–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos Mendoza M, Dubreucq B, Miquel M, Caboche M, Lepiniec L (2005) LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves. FEBS Lett 579:4666–4670

    Article  CAS  PubMed  Google Scholar 

  • Santos Mendoza M, Dubreucq B, Baud S, Parcy F, Caboche M, Lepiniec L (2008) Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J 54:608–620

    Article  CAS  PubMed  Google Scholar 

  • Slocombe SP, Cornah J, Pinfield-Wells H, Soady K, Zhang Q, Gilday A, Dyer JM, Graham IA (2009) Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways. Plant Biotechnol J 7:694–703

    Article  CAS  PubMed  Google Scholar 

  • Stitt M, Zeeman SC (2012) Starch turnover: pathways, regulation and role in growth. Curr Opin Plant Biol 15:282–292

    Article  CAS  PubMed  Google Scholar 

  • Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98:11806–11811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanhercke T, El Tahchy A, Liu Q, Zhou XR, Shrestha P, Divi UK, Ral JP, Mansour MP, Nichols PD, James CN, Horn PJ, Chapman KD, Beaudoin F, Ruiz-López N, Larkin PJ, de Feyter RC, Singh SP, Petrie JR (2014) Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves. Plant Biotechnol J 12:231–239

    Article  CAS  PubMed  Google Scholar 

  • Vanhercke T, Divi UK, El Tahchy A, Liu Q, Mitchell M, Taylor MC, Eastmond PJ, Bryant F, Mechanicos A, Blundell C, Zhi Y, Belide S, Shrestha P, Zhou XR, Ral JP, White RG, Green A, Singh SP, Petrie JR (2017) Step changes in leaf oil accumulation via iterative metabolic engineering. Metab Eng 39:237–246

    Article  CAS  PubMed  Google Scholar 

  • Vogel G, Browse J (1996) Cholinephosphotransferase and diacylglycerol acyltransferase—substrate specificities at a key branch point in seed lipid metabolism. Plant Physiol 110:923–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM (2010) Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol J 8:263–276

    Article  CAS  PubMed  Google Scholar 

  • Wan S, Truong-Trieu VMT, Ward T, Whalen JK, Altosaar I (2017) Advances in the use of genetically modified plant biomass for biodiesel generation. Biofuel Bioprod Biorefin 11:749–764

    Article  CAS  Google Scholar 

  • Winichayakul S, Scott RW, Roldan M, Hatier JH, Livingston S, Cookson R, Curran AC, Roberts NJ (2013) In vivo packaging of triacylglycerols enhances Arabidopsis leaf biomass and energy density. Plant Physiol 162:626–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LML, Dismukes GC, Posewitz MC (2010) Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell 9:1251–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu CC, Shanklin J (2016) Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues. Annu Rev Plant Biol 67(67):179–206

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Fan J, Froehlich JE, Awai K, Benning C (2005) Mutation of the TGD1 chloroplast envelope protein affects phosphatidate metabolism in arabidopsis. Plant Cell 17:3094–3110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Ji H, Liu D (2016) Oil biosynthesis in underground oil-rich storage vegetative tissue: comparison of Cyperus esculentus tuber with oil seeds and fruits. Plant Cell Physiol 57:2519–2540

    Article  CAS  PubMed  Google Scholar 

  • Yurchenko O, Shockey JM, Gidda SK, Silver MI, Chapman KD, Mullen RT, Dyer JM (2017) Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves. Plant Biotechnol J 15:1010–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zale J, Jung JH, Kim JY, Pathak B, Karan R, Liu H, Chen X, Wu H, Candreva J, Zhai Z, Shanklin J, Altpeter F (2016) Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass. Plant Biotechnol J 14:661–669

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZZ (2003) Overexpression analysis of plant transcription factors. Curr Opin Plant Biol 6:430–440

    Article  CAS  PubMed  Google Scholar 

  • Zolman BK, Silva ID, Bartel B (2001) The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid beta-oxidation. Plant Physiol 127:1266–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was conducted with the support of the Research Program for Agricultural Science & Technology Development (Project No. PJ01257102), the National Institute of Agricultural Science, Rural Development Administration, Next-generation BioGreen 21 Program (NBG21 PMBC Project No. PJ01115101), The Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries (IPET)(116079-03 and 316087-4), Republic of Korea, and the Mid-Career Researcher Program of the National Research Foundation of Korea (NRF-2017R1A2B4007096).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyeong-Ryeol Lee or Hyun Uk Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, KR., Kim, EH., Kim, KH. et al. Vegetable oil production in vegetative plant tissues. Plant Biotechnol Rep 11, 385–395 (2017). https://doi.org/10.1007/s11816-017-0460-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-017-0460-9

Keywords

Navigation