Skip to main content
Log in

H2O2 production and gene expression of antioxidant enzymes in kimchi cabbage (Brassica rapa var. glabra Regel) seedlings regulated by plant development and nitrosative stress-triggered cell death

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Two different growth stages of 12-day-old and 28-day-old kimchi cabbage seedlings showed differential chlorophylls, ion leakage, nitric oxide (NO) and H2O2 productions in their cotyledons and true leaves under normal growing conditions. Gene expression of various antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase (APX), monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase 1 (GR1) and glutathione S-transferase 1 (GST1) was also regulated in the growth stage- and the leaf position-dependent manners at the two growth stages of the seedlings. Sodium nitroprusside (SNP) NO donor (0.5 mM) caused tissue damage in cotyledons of the seedlings but not in true leaves. Differential NO and H2O2 were accumulated in the cotyledons and the true leaves with and without SNP application. Cat1, APX and GST1 were induced in the cotyledons by 0.5 mM of SNP at 6 h. GST1 gene was inducible in the cotyledons at 6 and 24 h, as well as in the true leaves by the SNP at 24 h. Increasing SNP doses more than 10 mM caused distinct increase in cellular damages of true leaves. Endogenous NO and H2O2 contents were inversely modulated by applied SNP showing NO increase and H2O2 decrease in the true leaves at 6 h. The nitrosative stress-triggered cell death augmented transcription of Cat1, APX, GR1 and GST1 genes, but down-regulated Cat2 gene expression in the true leaves at 6 h. Taken together, transcriptional regulation of antioxidant enzymes might be one of the mechanisms involved in H2O2 decomposition and glutathione-dependent defenses during the seedling development and nitrosative stress tolerance in the kimchi cabbage plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

Dhar:

Dehydroascorbate reductase

GR:

Glutathione reductase

GST:

Glutathione S-transferase

H2O2 :

Hydrogen peroxide

Mdhar:

Monodehydroascorbate reductase

NO:

Nitric oxide

O2 :

Superoxide anion

PCD:

Programmed cell death

POD:

Peroxidase

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SNP:

Sodium nitroprusside

SOD:

Superoxide dismutase

References

  • Albrecht V, Ingenfeld A, Apel K (2008) Snowy cotyledon 2: the identification of a zinc finger domain protein essential for chloroplast development in cotyledons but not in true leaves. Plant Mol Biol 66:599–608

    Article  CAS  PubMed  Google Scholar 

  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, Prasad MNV (2012) Modulation of glutathione and its enzymes in plants’ responses to toxic metals and metalloids-A review. Env Exp Bot 75:307–324

    CAS  Google Scholar 

  • Arc E, Sechet J, Corbineau F, Rajjou L, Marion-Poll A (2013) ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front Plant Sci 4:63

    PubMed Central  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (1999a) Is nitric oxide toxic or protective? Trend Plant Sci 4:299–300

    Article  Google Scholar 

  • Beligni MV, Lamattina L (1999b) Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants. Nitric Oxide: Biol Chem 3:199–208

    Article  CAS  Google Scholar 

  • Bertamini M, Nedunchezhian N (2002) Leaf age effects on chlorophyll, Rubisco, photosynthetic electron transport activities and thylakoid membrane protein in field grown grapevine leaves. J Plant Physiol 159:799–803

    Article  CAS  Google Scholar 

  • Bethke PC, Gubler F, Jacobson JV, Jones RL (2004) Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide. Planta 219:847–855

    Article  CAS  PubMed  Google Scholar 

  • Clark D, Durner J, Navarre DA, Klessig DF (2000) Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol Plant-Microbe Interact 13:1380–1384

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Leterrier M, Valderrama R, Airaki M, Chaki M, Palma JM, Barroso JB (2011) Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci 181:604–611

    Article  CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–915

    Article  CAS  PubMed  Google Scholar 

  • Cui J-X, Zhou Y-H, Ding J-G, Xia X-J, Shi K, Chen S-C, Asami T, Chen Z, Yu J-Q (2011) Role of nitric oxide in hydrogen peroxide-dependent induction of abiotic stress tolerance by brassinosteroids in cucumber. Plant Cell Environ 34:347–358

    Article  CAS  PubMed  Google Scholar 

  • de Gara L, de Pinto MC, Tommasi F (2003) The antioxidant systems vis-à-vis reactive oxygen species during plant-pathogen interaction. Plant Physiol Biochem 41:863–870

    Article  Google Scholar 

  • de Pinto MC, Tommasi F, de Gara L (2002) Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco bright-yellow 2 cells. Plant Physiol 130:698–708

    Article  PubMed Central  PubMed  Google Scholar 

  • de Pinto MC, Locato V, Sgobba A, Romero-Puertas MC, Gadaleta C, Delledonne M, de Gara L (2013) S-Nitrosylation of ascorbate peroxidase is part of programmed cell death signaling in tobacco bright yellow-2 cells. Plant Physiol 163:1766–1775

    Article  PubMed Central  PubMed  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  CAS  PubMed  Google Scholar 

  • Du Y-Y, Wang P-C, Chen J, Song C-P (2008) Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana. J Integr Plant Biol 50:1318–1326

    Article  CAS  PubMed  Google Scholar 

  • Ferrer MA, Barceló R (1999) Differential effects of nitric oxide on peroxidase and H2O2 production by the xylem of Zinnia elegans. Plant Cell Environ 22:891–897

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N (2013a) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Hasanuzzaman M, Nahar K, Macovei A, Tuteja N (2013b) Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiol Biochem 63:254–261

    Article  CAS  PubMed  Google Scholar 

  • Gong Y-W, Yuan Y-J (2006) Nitric oxide mediates inactivation of glutathione S-transferase in suspension culture of Taxus cuspidate during shear stress. J Biotechnol 123:185–192

    Article  CAS  PubMed  Google Scholar 

  • Guo FQ, Crawford NM (2005) Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 17:3436–3450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011) Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnol Rep 5:353–365

    Article  Google Scholar 

  • Jain M, Ghanashyam C, Bhattacharjee A (2010) Comprehensive expression analysis suggests overlapping and specific roles of rice glutathione S-transferase genes during development and stress responses. BMC Genomics 11:73

    Article  PubMed Central  PubMed  Google Scholar 

  • Joo J, Lee YH, Song SI (2014) Rice CatA, CatB, and CatC are involved in environmental stress response, root growth, and photorespiration, respectively. J Plant Biol 57:375–382

    Article  CAS  Google Scholar 

  • Kangasjärvi S, Neukermans J, Li S, Aro E-M, Noctor G (2012) Photosynthesis, photorespiration, and light signalling in defence responses. J Exp Bot 63:1619–1636

    Article  PubMed  Google Scholar 

  • Khan MN, Siddiqui MH, Mohammad F, Naeem M (2012) Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. Nitric Oxide: Biol Chem 27:210–218

    Article  CAS  Google Scholar 

  • Kim J-S, Shim I-S, Kim I-S, Kim M-J (2010) Changes of cysteine, glutathione and ascorbic acid content in Chinese cabbage, head lettuce and spinach by the growth stage. Kor J Hort Sci Technol 28:186–191

    CAS  Google Scholar 

  • Kopyra M, Gwóźdź EA (2003) Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lipinus luteus. Plant Physiol Biochem 41:1011–1017

    Article  CAS  Google Scholar 

  • Kwon SI, Lee H, An SC (2007) Differential expression of three catalase genes in the small radish (Raphanus sativus L. var. sativus). Mol Cells 24:37–44

    CAS  PubMed  Google Scholar 

  • Lee SH, An SC (2005) Differential expression of three catalase genes in hot pepper (Capsicum annuum L.). Mol Cells 20:247–255

    CAS  PubMed  Google Scholar 

  • Leitner M, Vandelle E, Gaupels F, Bellin D, Delledonne M (2009) NO signals in the haze: nitric oxide signalling in plant defence. Curr Opin Plant Biol 12:451–458

    Article  CAS  PubMed  Google Scholar 

  • Liao W-B, Huang G-B, Yu J-H, Zhang M-L (2012) Nitric oxide and hydrogen peroxide alleviate drought stress in marigold explants and promote its adventitious root development. Plant Physiol Biochem 58:6–15

    Article  CAS  PubMed  Google Scholar 

  • Lin C-C, Jih P-J, Lin H-H, Lin J-S, Chang L-L, Shen Y-H, Jeng S-T (2011) Nitric oxide activates superoxide dismutase and ascorbate peroxidase to repress the cell death induced by wounding. Plant Mol Biol 77:235–249

    Article  CAS  PubMed  Google Scholar 

  • López-Carrión AI, Castellano R, Rosales MA, Ruiz JM, Romero L (2008) Role of nitric oxide under saline stress: implication on proline metabolism. Biol Plant 52:587–591

    Article  Google Scholar 

  • Lu S, Su W, Li H, Guo Z (2009) Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities. Plant Physiol Biochem 47:132–138

    Article  CAS  PubMed  Google Scholar 

  • Mishina T, Lamb C, Zeier J (2007) Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis. Plant Cell Environ 30:39–52

    Article  CAS  PubMed  Google Scholar 

  • Mubarakshina MM, Ivanov BN, Naydov IA, Hillier W, Badger MR, Krieger-Liszkay A (2010) Production and diffusion of chloroplast H2O2 and its implication to signalling. J Exp Bot 61:3577–3587

    Article  CAS  PubMed  Google Scholar 

  • Mur LAJ, Prats E, Pierre S, Hall MA, Hebelstrup KH (2013) Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways. Front Plant Sci 4:215

    PubMed Central  PubMed  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Galisteo AP, Rodríguez-Serrano M, Pazmiño DM, Gupta DK, Sandalio LM, Romero-Puertas MC (2012) S-nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. J Exp Bot 63:2089–2103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129:954–956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Phang IC, Leung DWM, Taylor HH, Burritt DJ (2011) The protective effect of sodium nitroprusside (SNP) treatment on Arabidopsis thaliana seedlings exposed to toxic level of Pb is not linked to avoidance of Pb uptake. Ecotoxicol Environ Safety 74:1310–1315

    Article  CAS  PubMed  Google Scholar 

  • Procházková D, Wilhelmová N (2011) Nitric oxide, reactive nitrogen species and associated enzymes during plant senescence. Nitric Oxide: Biol Chem 24:61–65

    Article  Google Scholar 

  • Sang J, Jiang M, Lin F, Xu S, Zhang A, Tan M (2008) Nitric oxide reduces hydrogen peroxide accumulation involved in water stress-induced subcellular anti-oxidant defense in maize plants. J Integr Plant Biol 50:231–243

    Article  CAS  PubMed  Google Scholar 

  • Scheler C, Durner J, Astier J (2013) Nitric oxide and reactive oxygen species in plant biotic interactions. Curr Opin Plant Biol 16:1–6

    Article  Google Scholar 

  • Shimada H, Mochizuki M, Ogura K, Froehlich JE, Osteryoung KW, Shirano Y, Shibata D, Masuda S, Mori K, Takamiya K (2007) Arabidopsis cotyledon-specific chloroplast biogenesis factor CYO1 is a protein disulfide isomerase. Plant Cell 19:3157–3169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh HP, Kaur S, Batish DR, Sharma VP, Sharma N, Kohli RK (2009) Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide: Biol Chem 20:289–297

    Article  CAS  Google Scholar 

  • Sung CH, Hong JK (2010) Sodium nitroprusside mediates seedling development and attenuation of oxidative stresses in Chinese cabbage. Plant Biotechnol Rep 4:243–251

    Article  Google Scholar 

  • Takahashi H, Chen Z, Du H, Liu Y, Klessig DF (1997) Development of necrosis and activation of disease resistance in transgenic tobacco plants with severely reduced catalase levels. Plant J 11:993–1005

    Article  CAS  PubMed  Google Scholar 

  • Tarantino D, Vannini C, Bracale M, Campa M, Soave C, Murgia I (2005) Antisense reduction of thylakoidal ascorbate peroxidase in Arabidopsis enhances paraquat-induced photooxidative stress and nitric oxide-induced cell death. Planta 221:757–765

    Article  CAS  PubMed  Google Scholar 

  • Vandenabeele S, Vanderauwera S, Vuylsteke M, Rombauts S, Langebartels C, Seidlitz HK, Zabeau M, Van Montagu M, Inzé D, Van Breusegem F (2004) Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant J 39:45–58

    Article  CAS  PubMed  Google Scholar 

  • Wagner U, Edwards R, Dixon DP, Mauch F (2002) Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol Biol 49:515–532

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-S, Yang Z-M (2005) Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol 46:1915–1923

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Lin A, Loake GJ, Chu C (2013) H2O2-induced leaf cell death and the crosstalk of reactive nitric/oxygen species. J Integr Plant Biol 55:202–208

    Article  CAS  PubMed  Google Scholar 

  • Xue YJ, Tao L, Yang ZM (2008) Aluminum-induced cell wall peroxidase activity and lignin synthesis are differentially regulated by jasmonate and nitric oxide. J Agric Food Chem 56:9676–9684

    Article  CAS  PubMed  Google Scholar 

  • Zago E, Morsa S, Dat JF, Alard P, Ferrarini A, Inzé D, Delledonne M, van Breusegem F (2006) Nitric oxide- and hydrogen peroxide-responsive gene regulation during cell death induction in tobacco. Plant Physiol 141:404–411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zeier J, Delledonne M, Mishina T, Severi E, Sonoda M, Lamb C (2004) Genetic elucidation of nitric oxide signaling in incompatible plant-pathogen interactions. Plant Physiol 136:2875–2886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang F, Wang Y, Yang Y, Wu H, Wang D, Liu J (2007) Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant Cell Environ 30:775–785

    Article  PubMed  Google Scholar 

  • Zhao J (2007) Interplay among nitric oxide and reactive oxygen species. A complex network determining cell survival or death. Plant Signal Behav 2:544–547

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Research Foundation (NRF) of Korea, Ministry of Education of Korea government (grant no. 2013009893), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeum Kyu Hong.

Additional information

Y. J. Kim and Y. H. Lee equally contributed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y.J., Lee, Y.H., Lee, HJ. et al. H2O2 production and gene expression of antioxidant enzymes in kimchi cabbage (Brassica rapa var. glabra Regel) seedlings regulated by plant development and nitrosative stress-triggered cell death. Plant Biotechnol Rep 9, 67–78 (2015). https://doi.org/10.1007/s11816-015-0343-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-015-0343-x

Keywords

Navigation