Skip to main content
Log in

Transgenic plants with cyanobacterial genes

  • Review Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Over the years, cyanobacteria have been regarded as ideal model systems for studying fundamental biochemical processes like oxygenic photosynthesis and carbon and nitrogen assimilation. Additionally, they have been used as human foods, sources for vitamins, proteins, fine chemicals, and bioactive compounds. Aiming to increase plant productivity as well as nutritional values, cyanobacterial genes involved in carbon metabolism, fatty acid biosynthesis, and pigment biosynthesis have been intensively exploited as alternatives to homologous gene sources. In this short review, transgenic plants with cyanobacterial genes generated over the last two decades are examined, and the future prospects for transgenic crops using cyanobacterial genes obtained from functional genomics studies of numerous cyanobacterial genomes information are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson JM, Park Y-I, Chow WS (1997) Photoinactivation and photoprotection of photosystem II in nature. Physiol Plant 100:214–223

    Article  CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vaculor Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Asai N, Nakajima N, Kamada H, Kondo N (2000) Role of malate synthesis mediated by phosphoenolpyruvate carboxylase in guard cells in the regulation of stomatal movement. Plant Cell Environ 21:1–11

    Google Scholar 

  • Badger MR, Price GD (1994) The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 45:369–392

    Article  CAS  Google Scholar 

  • Bevan MW, Flavell RV, Chilton MD (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187

    Article  CAS  Google Scholar 

  • Bonner E, Van de Peer Y, Rouzé P (2006) The small RNA world of plants. New Phytol 171:451–468

    Google Scholar 

  • Burillo S, Luque I, Fuentes I, Contreras A (2004) Interactions between the nitrogen signal transduction protein PII and N-acetyl glutamate kinase in organisms that perform oxygenic photosynthesis. J Bacteriol 186:3346–3354

    Article  PubMed  CAS  Google Scholar 

  • Chamovitz D, Pecker I, Hirschberg J (1991) The molecular basis of resistance to the herbicide norflurazon. Plant Mol Biol 16:967–974

    Article  PubMed  CAS  Google Scholar 

  • Chen LM, Omiya O, Hata S, Izui K (2002) Moleculare characterization of a phosphoenolcarboxylase from a thermophilic cyanobacterium, Synechococcus vulcanus with unusual allosteric properties. Plant Cell Physiol 43:159–169

    Article  PubMed  CAS  Google Scholar 

  • Chen LM, Li K-Z, Miwa T, Izui K (2004) Overexpression of a cyanobacterial phosphoenolpyruvate carboxylase with diminished sensitivity to feedback inhibition in Arabidopsis changes amino acid metabolism. Planta 219:440–449

    PubMed  CAS  Google Scholar 

  • Choi SM, Jeong SW, Jeong WJ, Kwon SY, Chow WS, Park Y-I (2002) Chloroplast Cu/Zn-superoxide dismutase is a highly sensitive site in cucumber leaves chilled in the light. Planta 216:315–324

    Article  PubMed  CAS  Google Scholar 

  • Cogoni C, Romano N, Macino G (1994) Suppression of gene expression by homologous transgenes. Antonie Van Leeuwenhoek 65:205–209

    Article  PubMed  CAS  Google Scholar 

  • Davarpanah SJ, Jung SH, Kim YJ, Park YI, Min SR, Liu JR, Jeong WJ (2009) Stable plastid transformation in Nicotiana benthamiana. J Plant Biol 52:244–250

    Article  CAS  Google Scholar 

  • Drexler H, Spiekermann P, Meyer A, Domergue F, Zank T, Sperling P, Abbadi A, Heinz E (2003) Metabolic engineering of fatty acids for breeding new oilseed crops: strategies, problems and first results. J Plant Physiol 160:779–802

    Article  PubMed  CAS  Google Scholar 

  • Dufourmantel N, Pelissier B, Garcon F, Peltier G, Ferullo JM, Tissot G (2004) Generation of fertile transplastomic soybean. Plant Mol Biol 55:479–489

    Article  PubMed  CAS  Google Scholar 

  • Eisenhut M, Kahlon S, Hasse D, Ewald R, Lieman-Hurwitz J, Ogawa T, Ruth T, Bauwe H, Kaplan A, Hagemann M (2006) The plant-like C2 glycolate pathway and the bacterial-like glycerate cycle cooperate in phosphoglycolate metabolism in cyanobacteria. Plant Physiol 142:333–342

    Article  PubMed  CAS  Google Scholar 

  • Ferrario-Méry S, Besin E, Pichon O, Meyer C, Hodges M (2006) The regulatory PII protein controls arginine biosynthesis in Arabidopsis. FEBS Lett 580:2015–2020

    Article  PubMed  CAS  Google Scholar 

  • Forschhammer K (2004) Global carbon/nitrogen control by PII signal transduction in cyanobacteria: from signals to targets. FEMS Microbiol 28:319–333

    Article  CAS  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80:4803–4807

    Article  PubMed  CAS  Google Scholar 

  • Gerjets T, Sandmann G (2006) Ketocarotenoid formation in transgenic potato. J Exp Bot 57:3639–3645

    Article  PubMed  CAS  Google Scholar 

  • Giuliano G, Aquilani R, Rharmapuri S (2000) Metabolic engineering of plant carotenoids. Trends Plant Sci 5:406–409

    Article  PubMed  CAS  Google Scholar 

  • Givan CV, Kleczkowski LA (1992) The enzyme reduction of glyoxylate and hydroxypyruvate in leaves of higher plants. Plant Physiol 100:552–556

    Article  PubMed  CAS  Google Scholar 

  • Harrison EP, Willingham NM, Lloyd JC, Raines CA (1998) Reduced sedoheptulose-1,7-bisphosphatase levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation. Planta 204:27–36

    Article  CAS  Google Scholar 

  • Häusler RE, Rademacher T, Li J, Lipka V, Fischer KL, Schubert S, Kreuzaler F, Hirsch HJ (2001) Single and double overexpression of C4-cycle genes had differential effects on the pattern of endogenous enzymes, attenuation of photorespiration and on contents of UV protectants in transgenic potato and tobacco plants. J Exp Bot 52:1785–1803

    Article  PubMed  Google Scholar 

  • Häusler RE, Hirsch H-J, Kreuzaler F, Peterhänsel C (2002) Overexpression of C4-cycle enzymes in transgenic C3 plants: a biotechnological approach to improve C3-photosynthesis. J Exp Bot 53:591–607

    Article  PubMed  Google Scholar 

  • Herrera-Estrella L, Depicker A, van Montagu M, Schell J (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303:209–213

    Article  CAS  Google Scholar 

  • Huber SC, Hardin SC (2004) Numerous posttranslational modifications provide opportunities for the intricate regulation of metabolic enzymes at multiple levels. Curr Opin Plant Biol 7:318–322

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki-Nishizawa O, Fujii T, Azuma M, Sekiguchi K, Murata N, Ohtani T, Toguri T (1996) Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase. Nat Biotechnol 14:1003–1006

    Article  PubMed  CAS  Google Scholar 

  • Jaworski J, Cahoon EB (2003) Industrial oils from transgenic plants. Curr Opin Plant Biol 6:178–184

    Article  PubMed  CAS  Google Scholar 

  • Jo EA, Tewari RK, Hahn EJ, Paek KY (2008) Effect of photoperiod and light intensity on in vitro propagation of Alocasia amazonica. Plant Biotechnol Rep 2:207–212

    Article  Google Scholar 

  • Kaiser WM, Förster J (1989) Low CO2 prevents nitrate reduction in leaves. Plant Physiol 91:970–974

    Article  PubMed  CAS  Google Scholar 

  • Kajiwara S, Kakizono T, Saito T, Kondo K, Ohtani T, Nishio N, Nagai S, Misawa N (1995) Isolation and functional identification of a novel cDNA for astaxanthin biosynthesis from Haematococcus pluvialis, and astaxanthin synthesis in Escherichia coli. Plant Mol Biol 29:343–352

    Article  PubMed  CAS  Google Scholar 

  • Kebeish R, Niessen M, Thiruveedhi T, Bari R, Hirsh H-J, Rosenkranz R, Stäbler N, Schönfeld B, Kreuzaler F, Peterhänsel C (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25:593–599

    Article  PubMed  CAS  Google Scholar 

  • Kogami H, Shono M, Koike T, Yanagisawa S, Izui K, Sentoku N, Tanifuji S, Uchimiya H, Toki S (1994) Molecular and physiological evaluation of transgenic tobacco plants expressing a maize phosphoenolpyrvuatel carboxylase gene under the control of the cauliflower mosaic virus 35S promoter. Transgenic Res 3:287–296

    Article  CAS  Google Scholar 

  • Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384:557–560

    Article  CAS  Google Scholar 

  • Ku MSB, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M (1999) High level-expression of maize phosphoenolpyrvuatel carboxylase in transgenic rice plants. Nat Biotechnol 17:76–80

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004a) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves. Plant Physiol 136:2843–2854

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004b) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56:203–216

    Article  PubMed  CAS  Google Scholar 

  • Lee JM, Ryu JY, Kim HH, Choi SB, de Marsac NT, Park Y-I (2005) Identification of a glucokinase that generates a major glucose phosphorylation activity in the cyanobacterium Synechocystis sp. PCC 6803. Mol Cells 19:256–261

    PubMed  CAS  Google Scholar 

  • Lee SM, Kang K, Chung H, Yoo SH, Xu XM, Lee SB, Cheong JJ, Daniell H, Kim M (2006) Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol Cells 21:401–410

    PubMed  CAS  Google Scholar 

  • Lee S, Ryu J-Y, Kim SY, Jeon J-H, Song JY, Cho H-T, Choi S-B, Choi D, de Marsac NT, Park Y-I (2007) Transcriptional regulation of the respiration genes in the cyanobacterium Synechococystis sp. PCC 6803 during the early response to glucose feeding. Plant Physiol 145:1018–1030

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre S, Lawson T, Fryer M, Zakhleniuk OV, Lloyd JC, Raines CA (2005) Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol 138:451–460

    Article  PubMed  CAS  Google Scholar 

  • Lieman-Hurwitz J, Rachmilevitch S, Mittler R, Marcus Y, Kaplan A (2003) Enhanced photosynthesis and growth of transgenic plants that express ictB, a gene involved in HCO3 accumulation in cyanobacteria. Plant Biotechnol J 1:43–50

    Article  PubMed  CAS  Google Scholar 

  • Lim JD, Cho J-I, Park Y-I, Han T-R, Choi S-B, Jeon J-S (2006) Sucrose transport from source to sink seeds in rice. Physiol Plant 126:572–584

    CAS  Google Scholar 

  • Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662

    Article  CAS  Google Scholar 

  • Lotan T, Hisrschberg J (1995) Cloning and expression in Escherichia coli of the gene encoding beta-C-4-oxygenase, that converts beta-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. FEBS Lett 364:125–128

    Article  PubMed  CAS  Google Scholar 

  • Lunn JE, Gillespie VJ, Furbank RT (2003) Expression of a cyanobacterial sucrose-phosphate synthase from Synechocystis sp. PCC 6803 in transgenic plants. J Exp Bot 54:223–237

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    Article  PubMed  CAS  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  PubMed  CAS  Google Scholar 

  • Misawa N, Masamoto K, Hori T, Ohtani T, Boger P, Sandmann G (1994) Expression of an Erwinia phytoene desaturase gene not only confers multiple resistance to herbicides interfering with carotenoid biosynthesis but also alters xanthophylls metabolism in transgenic plants. Plant J 6:481–489

    Article  CAS  Google Scholar 

  • Misawa N, Satomi Y, Kondo K, Yokoyama A, Kajiwara S, Saito T, Ohtani T, Miki W (1995) Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J Bacteriol 177:6575–6584

    PubMed  CAS  Google Scholar 

  • Miyagawa Y, Tamoi M, Shigeoka S (2001) Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nat Biotechnol 19:965–969

    Article  PubMed  CAS  Google Scholar 

  • Miyao M, Fukayama H (2003) Metabolic consequences of overproduction of phosphoenolpyruvate carboxylase in C3 plants. Arch Biochem Biophys 414:197–203

    PubMed  CAS  Google Scholar 

  • Murai N, Sutton DW, Murray MG, Slightom JL, Merlo DJ, Reichert NA, Sengupta-Gopalan S, Stock CA, Barker RF, Kemp JD, Hall TC (1983) Phaseolin gene from bean is expressed after transfer to sunflower via tumor-inducing plasmid vectors. Science 222:476–482

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Los DA (1997) Membrane fluidity and temperature perception. Plant Physiol 115:875–879

    PubMed  CAS  Google Scholar 

  • Naik PS, Chanemougasoundharam A, Paul Khurana SM, Kalloo G (2003) Genetic manipulation of carotenoid pathway in higher plants. Curr Sci 85:1423–1430

    CAS  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen RA (1990) Introduction of a chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  PubMed  CAS  Google Scholar 

  • Ninfa AJ, Jiang P (2005) PII signal transduction proteins: sensors of α-ketoglutarate that regulate nitrogen metabolism. Curr Opin Microbiol 8:168–173

    Article  PubMed  CAS  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359

    Article  PubMed  CAS  Google Scholar 

  • Orlova IV, Serebriiskaya TS, Popov V, Merkulova N, Nosov AM, Trunova TI, Tsydendambaev VD, Los DA (2003) Transformation of tobacco with a gene for the thermophilic acyl-lipid desaturase enhances the chilling tolerance of plants. Plant Cell Physiol 44:447–450

    Article  PubMed  CAS  Google Scholar 

  • Park Y-I, Chow WS, Osmond CB, Anderson JM (1996) Electron transport to oxygen mitigates against the photoinactivation of photosystem II in vivo. Photosynth Res 50:23–32

    Article  CAS  Google Scholar 

  • Park Y-I, Snadström S, Gustafsson P, Öquist G (1998) Expressin of the isiA gene is essential for the survival of the cyanobacterium Synechococcus sp. PCC7942 by protecting photosystem II from excess light under iron limitation. Mol Microbiol 32:123–129

    Article  Google Scholar 

  • Raines CA (2006) Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle. Plant Cell Environ 29:331–339

    Article  PubMed  CAS  Google Scholar 

  • Raven JA, Allen JF (2003) Genomics and chloroplast evolution: what did cyanobacteria do for plants? Genome Biol 4:209

    Article  PubMed  Google Scholar 

  • Reddy AS, Thomas TL (1996) Expression of a cyanobacteria delta 6-desaturase gene results in gamma-linolenic acid production in transgenic plants. Nat Biotechnol 14:639–642

    Article  PubMed  CAS  Google Scholar 

  • Reza MA, Goldenkova-Pavlova IV, Pchelkin VP, Tsydendambaev VD, Los DA, Nosov AM (2007) Acyl-lipid Δ12-desaturase of the cyanobacterium increases the unsaturation degree in transgenic potato (Solanum tuberosum L.). Biologia 53:4–7

    CAS  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  PubMed  CAS  Google Scholar 

  • Rolletschek H, Borisjuk L, Radchuk R, Miranda M, Heim U, Wobus U, Weber H (2004) Seed-specific expression of a bacterial phosphoenolpyruvate carboxylase in Vicia narbonensis increases protein content and improves carbon economy. Plant Biotechnol J 2:211–219

    Article  PubMed  CAS  Google Scholar 

  • Ryu JY, Song JY, Lee JM, Jeong SW, Chow WS, Choi S-B, Pogson BJ, Park Y-I (2004) Glucose-induced expression of carotenoid biosynthesis genes in the dark is mediated by cytosolic pH in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 279:25320–25325

    Article  PubMed  CAS  Google Scholar 

  • Sandman G (2001) Carotenoid biosynthesis and biotechnological application. Arch Biochem Biophys 385:4–12

    Article  CAS  Google Scholar 

  • Sharma-Natu P, Ghildiyal MC (2005) Potential targets for improving photosynthesis and crop yield. Curr Sci 88:1918–1928

    CAS  Google Scholar 

  • Shi H, Lee BH, Wu SH, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    Article  PubMed  CAS  Google Scholar 

  • Signora L, Galtier N, Skot L, Lucas H, Foyer CH (1998) Overexpression of sucrose phosphate synthase in Arabidopsis thaliana results in increased foliar sucrose/starch ratios and favours decreased foliar carbohydrate accumulation in plants after prolonged growth with CO2 enrichment. J Exp Bot 49:669–680

    Article  CAS  Google Scholar 

  • Singh S, Kate BN, Banerjee UC (2005a) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95

    Article  PubMed  CAS  Google Scholar 

  • Singh SP, Zhou X-R, Liu Q, Stymne S, Green AG (2005b) Metabolic engineering of new fatty acids in plants. Curr Opin Plant Biol 8:197–203

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama K, Hayakawa T, Kudo T, Ito T, Yamaya T (2004) Interaction of N-acetylglutamate kinase with a PII-like protein in rice. Plant Cell Physiol 45:1768–1778

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Ono K, Ugaki M, Ishimaru K, Aoki N, Ohsugi R (2000) Ser162-dependent inactivation of overproduced sucrose phosphate synthase protein of maize leaf in transgenic rice plants. Plant Cell Physiol 41:977–981

    Article  PubMed  CAS  Google Scholar 

  • Tamoi M, Nagaoka M, Yabuta Y, Shigeoka S (2005) Carbon metabolism in the Calvin cycle. Plant Biotechnol 22:355–360

    CAS  Google Scholar 

  • Tognetti VB, Palatnik JF, Fillat MF, Melzer M, Hajirezaei MR, Valle EM, Carrillo N (2006) Functional replacement of ferredoxin by a cyanobacterial flavodoxin in tobacco confers broad-range stress tolerance. Plant Cell 18:2035–2050

    Article  PubMed  CAS  Google Scholar 

  • Tognetti VB, Zurbriggen MD, Morandi EN, Fillat MF, Valle EM, Hajirezael M-R, Carrillo N (2007) Enhanced plant tolerance to iron starvation by functional substitution of chloroplast ferredoxin with a bacterial flavodoxin. Proc Natl Acad Sci USA 104:11495–11500

    Article  PubMed  CAS  Google Scholar 

  • Toh H, Kawamura T, Izui K (1994) Molecular evolution of phosphoenolpyruvate carboxylase. Plant Cell Environ 17:31–43

    Article  CAS  Google Scholar 

  • Toroser D, McMichael R Jr, Krause KP, Kurreck J, Sonnewald U, Stitt M, Huber SC (1999) Site-directed mutagenesis of serine 158 demonstrates its role in spinach leaf sucrose-phosphate synthase modulation. Plant J 17:407–413

    Article  PubMed  CAS  Google Scholar 

  • Waditee R, Bhuiyan Md NH, Rai V, Aoki K, Tanaka Y, Hibino T, Suzuki S, Takano J, Jagendorf AT, Takabe T, Takabe T (2005) Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proc Natl Acad Sci USA 102:1318–1323

    Article  PubMed  CAS  Google Scholar 

  • Waditee R, Tanaka Y, Takabe T (2006) Na+/H+ antiporters in plants and cyanobacteria. In: Rai AK, Takabe T (eds) Abiotic stress tolerance in plants. Kluwer, The Netherlands, pp 163–175

    Chapter  Google Scholar 

  • Wagner T, Windhövel U, Römer S (2002) Transformation of tobacco with a mutated cyanobacterial phytoene desaturase gene confers resistance to bleaching herbicides. Z Natuforsch 57c:671–679

    Google Scholar 

  • Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond B 355:1517–1529

    Article  CAS  Google Scholar 

  • Worrell AC, Bruneau JM, Summerfelt K, Boersig M, Voelker TA (1991) Expression of a maize sucrose phosphate synthase in tomato alters leaf carbohydrate partitioning. Plant Cell 3:1121–1130

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. Seok-Yoon Kwon and Dong-soo Choi for their critical readings and comments on the manuscript. Work related to cyanobacterial functional genomics to exploit heterologous genes for crop improvement were supported by the Crop Functional Genomics Center to Y.I. Park (CG2151) and J.R. Liu (CGM0400737), by the Korea Science and Engineering Foundation to Y.I. Park (R01-2007-000-20149-0), and by Studies on Molecular Genomics of Marine and Extreme Organisms to J.R. Liu.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youn-Il Park or Jang R. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, YI., Choi, SB. & Liu, J.R. Transgenic plants with cyanobacterial genes. Plant Biotechnol Rep 3, 267–275 (2009). https://doi.org/10.1007/s11816-009-0100-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-009-0100-0

Keywords

Navigation