Skip to main content
Log in

Enhancement of catalytic activity of lipase-immobilized Fe3O4-chitosan microsphere for enantioselective acetylation of racemic 1-phenylethylamine

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Racemic 1-phenylethylamine was resolved by enantiomer selective acetylation using Fe3O4-chitosan microsphere (CTS)-glutaraldehyde-lipase in a solvent-free system under an alternating magnetic field. Magnetic chitosan microspheres (Fe3O4-CTS) were prepared via chemical co-precipitation and cross-linked with lipase using glutaraldehyde to form Fe3O4-CTS-glutaraldehyde-lipase particles. The magnetic, physicochemical, and textural characteristics of Fe3O4-CTS-glutaraldehyde-lipase particles were assessed by Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The optimal immobilization conditions were 2.4 mg/mL lipase, 10 mg/mL Fe3O4-CTS-glutaraldehyde, pH 8.5, 35 °C, 3 h. The loading amount of lipase and the specific activity got to 132 mg/g carrier and 48 U/g. The optimal reaction conditions of the acylation reaction using Fe3O4-CTS-glutaraldehyde-lipase were 300 mmol/L 1-phenylethylamine, 150 mg immobilized lipase, 2 mL vinyl acetate, 12.6 ×g rotating speed, 40 °C, 8 h. The activity of the Fe3O4-CTS-glutaraldehyde-lipase particles and conversion were improved when they were exposed to an external alternating magnetic field. The optimum magnetic field was 12 Gs (500 Hz). The conversion, enantiomeric excess of (R)-N-(1-phenylethyl)acetamide, and E value reached 41.8%, 98.4%, and 264, respectively. Fe3O4-CTS-glutaraldehyde-lipase could be reused seven times. A kinetic model of the immobilized lipase-catalyzed resolution of 1-phenylethylamine was set up based on the ping-pong bi-bi mechanism. The kinetic constants were Vmax=1.62×10−2 mM/min, KA=2.84×10−4 mM, and KB=5.8×10−1 mM. The model data fit well with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Cammenberg, K. Hult and S. Park, Chembiochem, 7(11), 1745 (2006).

    Article  CAS  Google Scholar 

  2. A. A. Boezio, J. Pytkowicz, A. Côté and A. B. Charette, J. Am. Chem. Soc., 35(12), 14260 (2004).

    Google Scholar 

  3. R. L. Hanson, B. L. Davis, Y. J. Chen, S. L. Goldberg, W. L. Parker, T. P. Tully, M. A. Montana and R. N. Patal, Adv. Synth. Catal., 350(9), 1367 (2008).

    Article  CAS  Google Scholar 

  4. D. R. Artis, I. S. Cho and J. M. Muchowski, Can. J. Chem., 70(6), 1838 (2010).

    Article  Google Scholar 

  5. M. Latroche, S. Surblé, C. Serre, C. Mellot-Draznieks, P. L. Llewellyn, J. H. Lee, J. S. Chang, S. H. Jhung and G. Férey, Angew. Chem. Int. Edit., 45(48), 8227 (2010).

    Article  Google Scholar 

  6. B. Altava, M. I. Burguete, N. Carbó, J. Escorihuela and S. V. Luis, Tetrahedron. Asymmetr., 21(8), 982 (2010).

    Article  CAS  Google Scholar 

  7. K. E. Jaeger and T. Eggert, Curr. Opin. Biotechnol., 13(4), 390 (2002).

    Article  CAS  Google Scholar 

  8. F. Hasan, A. A. Shah and A. Hameed, Enzyme Microb. Technol., 39(2), 235 (2006).

    Article  CAS  Google Scholar 

  9. K. E. Jaeger and M. T. Reetz, Trends Biotechnol., 16(9), 396 (1998).

    Article  CAS  Google Scholar 

  10. A. R. M. Yahya, W. A. Anderson and M. Moo-Young, Enzyme Microb. Technol., 23(8), 438 (1998).

    Article  CAS  Google Scholar 

  11. S. Allenmark and A. Ohlsson, Chirality, 4(2), 98 (1992).

    Article  CAS  Google Scholar 

  12. J. C. Wu, R. L. Hou, Y. Leng, Y. Chow, R. J. Li, M. M. R. Talukder and W. J. Choi, Biotechnol. Bioproc. E., 11(3), 211 (2006).

    Article  CAS  Google Scholar 

  13. K. Ditrich, Cheminform., 39(46), 2283 (2008).

    Article  Google Scholar 

  14. A. Adnani, M. Basri and N. Chaibakhsh, Carbohydr. Res., 346(4), 472 (2011).

    Article  CAS  Google Scholar 

  15. A. Mustafa, A. Karmali and W. Abdelmoez, J. Clean. Prod., 137, 953 (2016).

    Article  CAS  Google Scholar 

  16. K. S. Jaiswal and V. K. Rathod, Ultrason. Sonochem., 40(PtA), 727 (2018).

    Article  CAS  Google Scholar 

  17. F. Uthoff, A. Reimer, A. Liese and H. Gröger, Sustain Chem. Pharm., 5, 42 (2017).

    Article  CAS  Google Scholar 

  18. S. L. Gilani, G. D. Najafpour, A. Moghadamnia and A. H. Kamaruddin, J. Mol. Catal. B: Enzym., 133, 144 (2016).

    Article  CAS  Google Scholar 

  19. W. Xie and J. Wang, Biomass Bioenerg., 36(328), 373 (2012).

    Article  CAS  Google Scholar 

  20. B. B. Romdhane, Z. B. Romdhane, A. Gargouri and H. Belghith, J. Mol. Catal. B: Enzym., 68(3-4), 230 (2011).

    Article  Google Scholar 

  21. J. N. Talbert, L. S. Wang, B. Duncan, Y. Jeong, S. M. Andler, V. M. Rotello and J. M. Goddard, Biomacromolecules, 15(11), 3915 (2014).

    Article  CAS  Google Scholar 

  22. Z. Y. Qu, F. L. Hu, K. M. Chen, Z. Q. Duan, H. C. Gu and H. Xu, J. Colloid Interface Sci., 398(19), 82 (2013).

    Article  CAS  Google Scholar 

  23. E. T. Hwang and M. B. Gu, Eng. Life Sci., 13(1), 49 (2013).

    Article  CAS  Google Scholar 

  24. P. Ye, Z. K. Xu, A. F. Che, J. Wu and P. Seta, Biomaterials, 26(32), 6394 (2005).

    Article  CAS  Google Scholar 

  25. B. B. Romdhane, Z. B. Romdhane, A. Gargouri and H. Belghith, J. Mol. Catal. B. Enzym., 68(3-4), 230 (2011).

    Article  Google Scholar 

  26. M. F. G. Manzano and C. I. A. Igarzabal, J. Mol. Catal. B: Enzym., 72(1-2), 28 (2011).

    Article  CAS  Google Scholar 

  27. X. Y. Wang, X. P. Jiang, Y. Li, S. Zeng and Y. W. Zhang, Int. J. Biol. Macromol., 75, 44 (2015).

    Article  CAS  Google Scholar 

  28. H. Noureddini, X. Gao and R. S. Philkana, Bioresour. Technol., 96(7), 769 (2004).

    Article  Google Scholar 

  29. C. H. Kuo, Y. C. Liu, C. M. J. Chang, J. H. Chen, C. Chang and C. J. Shieh, Carbohyd Polym., 87(4), 2538 (2012).

    Article  CAS  Google Scholar 

  30. G. Dodi, D. Hritcu, G. Lisa and M. I. Popa, Chem. Eng. J., 203(5), 130 (2012).

    Article  CAS  Google Scholar 

  31. G. Bayramoglu, M. Yilmaz and A. M. Yakup, Bioprocess Biosyst. Eng., 33(4), 439 (2010).

    Article  CAS  Google Scholar 

  32. O. L. Tavano, R. Fernandez-Lafuente, A. J. Goulart and R. Monti, Process. Biochem., 48(7), 1054 (2013).

    Article  CAS  Google Scholar 

  33. D. I. Bezbradica, C. Mateo and J. M. Guisan, J. Mol. Catal. B. Enzym., 102(14), 218 (2014).

    Article  CAS  Google Scholar 

  34. J. Zhi, Y. Wang, Y. Lu, J. Ma and G. Luo, React. Funct. Polym., 66(12), 1552 (2006).

    Article  CAS  Google Scholar 

  35. E. B. Denkbaş, E. Kiliçay, C. Birlikseven and E. Öztürk, React. Funct. Polym., 50(3), 225 (2002).

    Article  Google Scholar 

  36. W. Xie and J. Wang, Biomass Bioenerg., 36(328), 373 (2012).

    Article  CAS  Google Scholar 

  37. W. J. Ting, K. Y. Tung, R. Giridhar and T. Wuw, J. Mo. Catal. B: Enzym., 42(1), 32 (2006).

    Article  CAS  Google Scholar 

  38. F. Gros, S. Baup and M. Aurousseau, Powder Technol., 183(2), 152 (2008).

    Article  CAS  Google Scholar 

  39. M. Q. Zheng, Z. G. Su, X. Y. Ji, G. H. Ma, P. Wang and S. P. Zhang, J. Biotechnol., 168(2), 212 (2013).

    Article  CAS  Google Scholar 

  40. X. J. Janssen, A. J. Schellekens, K. van Ommering, L. J. van Ijzendoorna and M. W. Prins, Biosens. Bioelectron., 24(7), 1937 (2009).

    Article  CAS  Google Scholar 

  41. P. M. Guo, F. H. Huang, Q. D Huang and C. Zheng, J. Am. Oil. Chem. Soc., 55(1), 561 (2013).

    Google Scholar 

  42. C. S. Chen, Y. Fujimoto, G. Girdaukas and C. J. Sih, J. Am. Chem. Soc., 104(25), 7294 (1982).

    Article  CAS  Google Scholar 

  43. M. M. Bradford, Anal. Biochem., 72(s 1-2), 248 (1976).

    Article  CAS  Google Scholar 

  44. A. Baghban, M. Heidarizadeh, E. Doustkhah, S. Rostamnia and P. F. Rezaei, Int. J. Biol. Macromol., 103, 1194 (2017).

    Article  CAS  Google Scholar 

  45. C. L. Pan, B. Hu, W. Li, Y. Sun, H. Ye and X. X. Zeng, J. Mol. Catal. B. Enzym., 61(3-4), 208 (2009).

    Article  CAS  Google Scholar 

  46. Q. K. Zhang, J. Q. Kang, B. Yang, L. Z. Zhao, Z. S. Hou and B. Tang, Chinese. J. Catal., 37(3), 389 (2016).

    Article  Google Scholar 

  47. G. D. Yadav and A. H. Trivedi, Enzyme Microb. Technol., 32(7), 783 (2003).

    Article  CAS  Google Scholar 

  48. M. Päiviö, P. Perkiö and L. T. Kanerva, Tetrahedron. Asymmetr., 23(3-4), 230 (2012).

    Article  Google Scholar 

Download references

Acknowledgement

We thank the Natural Science Foundation of Zhejiang Province (LY15B060005) and Huahai Innovation Plan (SROP) of Zhejiang University of Technology for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhimin Ou or Hanbing Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Ou, Z., Tang, L. et al. Enhancement of catalytic activity of lipase-immobilized Fe3O4-chitosan microsphere for enantioselective acetylation of racemic 1-phenylethylamine. Korean J. Chem. Eng. 36, 729–739 (2019). https://doi.org/10.1007/s11814-019-0249-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0249-3

Keywords

Navigation