Skip to main content
Log in

Kinetics of growth on dual substrates, production of novel glutaminase-free L-asparaginase and substrates utilization by Pectobacterium carotovorum MTCC 1428 in a batch bioreactor

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Bacterial L-asparaginase has been widely used as a potential therapeutic agent in the treatment of various lymphoblastic leukemia diseases. We studied product and dual substrates utilization kinetics by P. carotovorum MTCC 1428 in batch bioreactor. The kinetic study revealed that the maximum growth of P. carotovorum MTCC 1428 was achieved at 2 g l −1 and 5 g l −1 of glucose and L-asparagine, respectively. Different substrate inhibition models were fitted to the growth kinetic data and the additive form of double Luong model was found to best explain the growth kinetics of P. carotovorum MTCC 1428. The kinetic parameters of growth studies showed that the predicted maximum inhibition concentration of glucose (S mg ) and L-asparagine (S ma ) was close to the experimentally observed value 15.0 and 10 g l −1, respectively. Modified form of the Luedeking-Piret model was used to describe the kinetics of L-asparaginase production, and the system seems to be mixed growth associated. Kinetic models of dual substrate growth, L-asparaginase production and substrate(s) utilization by P. carotovorum MTCC 1428 well fitted with experimental data with regression coefficients (R2) value of 0.97, 0.96 and 0.93, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. H. Athale and A. K. C. Chan, Thromb. Res., 111, 199 (2003).

    Article  CAS  Google Scholar 

  2. G. A. Kotzia and N. E. Labrou, J. Biotechnol., 127, 657 (2007).

    Article  CAS  Google Scholar 

  3. F. Pedreschi, K. Kaack and K. Granby, Food Chem., 109, 386 (2008).

    Article  CAS  Google Scholar 

  4. E. Teodor, S.C. Litescu, V. Lazar and R. Somoghi, J. Mater. Sci. Mater. Med., 20, 1307 (2009).

    Article  CAS  Google Scholar 

  5. N. Verma, K. Kumar, G. Kaur and S. Anand, Artif. Cells. Blood Substit. Immobil. Biotechnol., 35, 449 (2007).

    Article  CAS  Google Scholar 

  6. U.K. Narta, S. S. Kanwar and W. Azmi, Crit. Rev. Oncol. Hematol., 61, 208 (2007).

    Article  Google Scholar 

  7. J. C. Wriston and T.O. Yellin, Adv. Enzymol. Relat. Areas Mol. Biol., 39, 185 (1973).

    CAS  Google Scholar 

  8. J. Krasotkina, A. A. Borisova, Y.V. Gervaziev and N. N. Sokolov, Biotechnol. Appl. Biochem., 39, 215 (2004).

    Article  CAS  Google Scholar 

  9. H. J. Müller and J. Boos, Crit. Rev. Oncol. Hematol., 28, 97 (1998).

    Article  Google Scholar 

  10. J.A. Distasio, A. M. Salazar, M. Nadji and D. L. Durden, Int._J. Cancer, 30, 343 (1982).

    Article  CAS  Google Scholar 

  11. W.K. Chan, P. L. Lorenzi, A. Anishkin, P. Purwaha, D. M. Rogers, S. Sukharev, S. B. Rempe and J.N. Weinstein, Blood, 123, 3596 (2014).

    Article  CAS  Google Scholar 

  12. M. Zinn, B. Witholt and T. Egli, J. Biotechnol., 113, 263 (2004).

    Article  CAS  Google Scholar 

  13. S. Kumar, K. Pakshirajan and V. V. Dasu, Appl. Microbiol. Biotechnol., 84, 477 (2009).

    Article  CAS  Google Scholar 

  14. S. Kumar, V.V. Dasu and K. Pakshirajan, Process Biochem., 45, 223 (2010).

    Article  CAS  Google Scholar 

  15. O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, J. Biol. Chem., 193, 265 (1951).

    CAS  Google Scholar 

  16. P.A. Haynes, D. Sheumack, L. G. Greig, J. Kibby and J.W. Redmond, J. Chromatogr., 588, 107 (1991).

    Article  CAS  Google Scholar 

  17. Biochemical engineering fundamentals/James E. Bailey, David F. Ollis.-Version details, Trove. (2016).

  18. M. L. Shuler, F. Kargi, Bioprocess engineering: basic concepts, Prentice Hall (1992).

    Google Scholar 

  19. A. Bouguettoucha, B. Balannec, S. Nacef and A. Amrane, Enzyme Microb. Technol., 41, 377 (2007).

    Article  CAS  Google Scholar 

  20. T. Yano and S. Koga, Biotechnol. Bioeng., 11, 139 (1969).

    Article  CAS  Google Scholar 

  21. J.H. Luong, Biotechnol. Bioeng., 29, 242 (1987).

    Article  CAS  Google Scholar 

  22. S. Gokulakrishnan and S.N. Gummadi, Process Biochem., 41, 1417 (2006).

    Article  CAS  Google Scholar 

  23. R. Luedeking and E. L. Piret, J. Biochem. Microbiol. Technol. Eng., 1, 393 (1959).

    Article  CAS  Google Scholar 

  24. N. P. Guerra, A.T. Agrasar, C. L. Macías, P. F. Bernárdez and L. P. Castro, J. Food Eng., 82, 103 (2007).

    Article  CAS  Google Scholar 

  25. L. S. Lasdon, A.D. Waren, A. Jain and M. Ratner, ACM Trans Math Softw, 4, 34 (1978).

    Article  Google Scholar 

  26. S. Kumar, A. A. Prabhu, V.V. Dasu and K. Pakshirajana, Prep. Biochem Biotech. (2016), DOI:10.1080/10826068.2016.1168841.

    Google Scholar 

  27. J. Mukherjee, S. Majumdar and T. Scheper, Appl. Microbiol. Biotechnol., 53, 180 (2000).

    Article  CAS  Google Scholar 

  28. R. Callewaert and L.D. Vuyst, Appl. Environ. Microbiol., 66, 606 (2000).

    Article  CAS  Google Scholar 

  29. E. Albanese and K. Kafkewitz, Appl. Environ. Microbiol., 36, 25 (1978).

    CAS  Google Scholar 

  30. S. Khamna, A. Yokota and S. Lumyong, Int. J. Integr. Biol., 6, 22 (2009).

    CAS  Google Scholar 

  31. A. J. Shah, R.V. Karadi and P.P. Parekh, Asian J. Biotechnol., 2, 169 (2010).

    Article  CAS  Google Scholar 

  32. F. S. Liu and J.E. Zajic, Appl. Microbiol., 25, 92 (1973).

    CAS  Google Scholar 

  33. H. Geckil, S. Gencer and M. Uckun, Enzyme Microb. Technol., 35, 182 (2004).

    Article  CAS  Google Scholar 

  34. B. Heinemann and A. J. Howard, Appl. Microbiol., 18, 550 (1969).

    CAS  Google Scholar 

  35. Y.R. Abdel-Fattah and Z. A. Olama, Process Biochem., 38, 115 (2002).

    Article  CAS  Google Scholar 

  36. R.S. Prakasham, C.S. Rao, R.S. Rao, G.S. Lakshmi and P.N. Sarma, J. Appl. Microbiol., 102, 1382 (2007).

    Article  CAS  Google Scholar 

  37. Q. He, N. Li, X. Chen, Q. Ye, J. Bai, J. Xiong and H. Ying, Korean J. Chem. Eng., 28(2), 544 (2011).

    Article  CAS  Google Scholar 

  38. D. Surendhiran, M. Vijay, B. Sivaprakash and A. Sirajunnisa, 3Biotech., 5, 663 (2015).

    CAS  Google Scholar 

  39. T. Tosa, R. Sano, K. Yamamoto, M. Nakamura and K. Ando, Appl. Microbiol., 22, 387 (1971).

    CAS  Google Scholar 

  40. D.X. Sun and P. Setlow, J. Bacteriol., 173, 3831 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Dasu Veeranki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanjay, K., Anand, A.P., Veeranki, V.D. et al. Kinetics of growth on dual substrates, production of novel glutaminase-free L-asparaginase and substrates utilization by Pectobacterium carotovorum MTCC 1428 in a batch bioreactor. Korean J. Chem. Eng. 34, 118–126 (2017). https://doi.org/10.1007/s11814-016-0216-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0216-1

Keywords

Navigation