Skip to main content
Log in

Engineering Escherichia coli to sense acidic amino acids by introduction of a chimeric two-component system

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In an attempt to create an acidic amino acid-sensing Escherichia coli, a chimeric sensor kinase (SK)-based biosensor was constructed using Pseudomonas putida AauS. AauS is a sensor kinase that ultimately controls expression of the aau gene through its cognate response regulator AauR, and is found only in P. putida KT2440. The AauZ chimera SK was constructed by integration of the sensing domain of AauS with the catalytic domain of EnvZ to control the expression of the ompC gene in response to acidic amino acids. Real-time quantitative PCR and GFP fluorescence studies showed increased ompC gene expression and GFP fluorescence as the concentration of acidic amino acids increased. These data suggest that AauS-based recombinant E. coli can be used as a bacterial biosensor of acidic amino acids. By employing the chimeric SK strategy, various bacteria biosensors for use in the development of biochemical-producing recombinant microorganisms can be constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Faurie, J. Thommel, B. Bathe, V.G. Debabov, S. Huebner, M. Ikeda, E. Kimura, A. Marx, B. Möckel, U. Mueller and W. Pfefferle (Eds.), Microbial Production of l-Amino Acids, Advances in Biochemical Engineering/Biotechnology, Springer Berlin Heidelberg (2003).

    Google Scholar 

  2. C. Rangan and D. G. Barceloux, Dis. Mon, 55, 292 (2009).

    Article  Google Scholar 

  3. T. Hermann, J. Biotechnol., 104, 155 (2003).

    Article  CAS  Google Scholar 

  4. A.M. Stock, V.L. Robinson and P.N. Goudreau, Annu. Rev. Biochem., 69,183 (2000).

    Google Scholar 

  5. A. H. West and A. M. Stock, Trends Biochem. Sci, 26, 369 (2001).

    Article  CAS  Google Scholar 

  6. P. J. A. Cock and D. E. Whitworth, Mol. Biol. Evol, 24, 2355 (2007).

    Article  CAS  Google Scholar 

  7. R. Utsumi, R.E. Brissette, A. Rampersaud, S.A. Forst, K. Oosawa and M. Inouye, Science, 245, 1246 (1989).

    Article  CAS  Google Scholar 

  8. A. Levskaya, A. A. Chevalier, J. J. Tabor, Z. B. Simpson, L. A. Lavery, M. Levy, E. A. Davidson, A. Scouras, A.D. Ellington, E. M. Marcotte and C. A. Voigt, Nature, 438, 441 (2005).

    Article  CAS  Google Scholar 

  9. H. Gerken and R. Misra, J. Bacteriol, 192, 6271 (2010).

    Article  CAS  Google Scholar 

  10. A. M. Sonawane, B. Singh and K. H. Rohm, Appl. Environ. Microbiol, 72, 6569 (2006).

    Article  CAS  Google Scholar 

  11. I. Ganesh, S. Ravikumar, S. J. Park, S.H. Lee and S. H. Hong, Korean J. Chem. Eng, 30, 1443 (2013).

    Article  CAS  Google Scholar 

  12. N. Ayyadurai, R. Neelamegam, S. Nagasundrapandian, S. Edwardraja, H. Park, S. Lee, T. Yoo, H. Yoon and S. G. Lee, Biotechnol. Bioprocess Eng, 14, 257 (2009).

    Article  CAS  Google Scholar 

  13. H. Eleaume and S. Jabbouri, J. Microbiol. Meth, 59, 363 (2004).

    Article  CAS  Google Scholar 

  14. K. Ahn, K. B. Lee, Y. J. Kim and Y.-M. Koo, Korean J. Chem. Eng, 31, 849 (2014).

    Article  CAS  Google Scholar 

  15. P. C. Jurs, G. A. Bakken and H. E. McClelland, Chem. Rev, 100, 2649 (2000).

    Article  CAS  Google Scholar 

  16. K. S. Kim and J.W. Ko, Korean J. Chem. Eng, 22, 26 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Ho Hong.

Additional information

The authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravikumar, S., Ganesh, I., Maruthamuthu, M.K. et al. Engineering Escherichia coli to sense acidic amino acids by introduction of a chimeric two-component system. Korean J. Chem. Eng. 32, 2073–2077 (2015). https://doi.org/10.1007/s11814-015-0024-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0024-z

Keywords

Navigation