Skip to main content
Log in

The influence of calcination temperature on catalytic activities in a Co based catalyst for CO2 dry reforming

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The carbon dioxide dry reforming of methane (CDR) reaction could be thermodynamically favored in the range of 800 to 1,000 °C. However, the catalyst in this reaction should be avoided at the calcination temperature over 800 °C since strong metal support interaction (SMSI) in this temperature range can decrease activity due to loss of active sites. Therefore, we focused on optimizing the temperature of pretreatment and a comparison of surface characterization results for CDR. Results related to metal sintering over support, re-dispersion by changing of particle size of metal-support, and strong metal support interaction were observed and confirmed in this work. In our conclusion, optimum calcination temperature for a preparation of catalyst was proposed that 400 °C showed a higher and more stable catalytic activity without changing of support characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. C Alyea, D. He and J. Wang, Appl. Catal. A, 104, 77 (1993).

    Article  CAS  Google Scholar 

  2. S. Wang, G.Q.M. Lu and G. J. Millar, Energy Fuel, 624, 896 (1996).

    Article  Google Scholar 

  3. J. H. Kim, T.Y. Kim, J.W. Yoo, K. B. Lee and S. I. Hong, Korean J. Chem. Eng., 29(10), 1329 (2012).

    Article  CAS  Google Scholar 

  4. K. I. Moon, C. H. Kim, J. S. Choi, S. H. Lee, Y.G. Kim and J. S. Lee, Korean Chem. Eng. Res., 35(6), 890 (1997).

    CAS  Google Scholar 

  5. T. Inui, K. Ichino, I. Matsuoka, T. Takeguchi, S. Iwamoto, S. B. Pu and S. I. Nishimoto, Korean J. Chem. Eng., 14(6), 441 (1997).

    Article  CAS  Google Scholar 

  6. E. Ruckenstein and H.Y. Wang, Appl. Catal. A, 204, 257 (2000).

    Article  CAS  Google Scholar 

  7. P. Ferreira-Aparicio, A. Guerrero-Ruiz and I. Rodríguez-Ramos, Appl. Catal. A, 170, 177 (1998).

    Article  CAS  Google Scholar 

  8. S. H. Song, S.B. Lee, J.W. Bae, P. S. Sai Prasad, K.W. Jun and Y.G. Shul, Catal. Lett., 129, 233 (2009).

    Article  CAS  Google Scholar 

  9. S. Wang, G. Q. Lu and G. J. Millar, Energy Fuel, 10, 896 (1996).

    Article  CAS  Google Scholar 

  10. S. H. Song, S. B. Lee, J.W. Bae, P. S. Sai Prasad and K.W. Jun, Catal. Commun., 9, 2282 (2008).

    Article  CAS  Google Scholar 

  11. M. S. Fan, A. Z. Abdullah and S. Bhatia, ChemCatChem, 1, 192 (2009).

    Article  CAS  Google Scholar 

  12. R. C. Reuel and C. H. Bartholomew, J. Catal., 85, 63 (1984).

    Article  CAS  Google Scholar 

  13. A. Kogelbauer, J. C. Weber and J.G. Goodwin Jr., Catal. Lett., 34, 259 (1995).

    Article  CAS  Google Scholar 

  14. W. K. Jozwiak, E. Szubiakiewicz, J. Goralski, A. Klonkowski and T. Paryjczak, Kinet. Catal., 45, 247 (2004).

    Article  CAS  Google Scholar 

  15. E. Van Steen, G. S. Sewell, R. A. Makhothe, C. Micklethwaite, H. Manstein, M. De Lange and C. T. O. Connor, J. Catal., 162, 220 (1996).

    Article  Google Scholar 

  16. R. L. Chin and D. M. Hercules, J. Phys. Chem., 86, 360 (1982).

    Article  CAS  Google Scholar 

  17. R. Riva, H. Miessner, R. Vitali and G. D. Piero, Appl. Catal., 196, 111 (2000).

    Article  CAS  Google Scholar 

  18. A. Lapidus, A. Krylova, V. Kazanskii, V. Borovkov, A. Zaitsev, J. Rathousky, A. Zukal and M. Janálková, Appl. Catal., 73, 65 (1991).

    Article  CAS  Google Scholar 

  19. A Lapidus, A. Krylova, J. Rathousky, A. Zukal and M. Jancalkova, Appl. Catal., 80, 1 (1992).

    Article  CAS  Google Scholar 

  20. E. Lira, C.M. López, F. Oropeza, M. Bartolini, J. Alvarez, M. Goldwasser, F. L. Linares, J. F. Lamonier and M. J. Pérez Zurita, J. Mol. Catal., 281, 146 (2008).

    Article  CAS  Google Scholar 

  21. J.M. Jablonski, J. Okal, D. Potocza-Petru and L. Krajczyk, J. Catal., 220, 146 (2003).

    Article  CAS  Google Scholar 

  22. B. Ernst, A. Besaddik and L. Hilaire, Catal. Today, 39, 329 (1998).

    Article  CAS  Google Scholar 

  23. D. Potoczna-Petru, J.M. Jablonski, J. Okal and L. Krajczyk, Appl. Catal., 175, 113 (1998).

    Article  CAS  Google Scholar 

  24. S.C. Petitto and M.A. Langell, J. Vac. Sci. Technol., 22, 1690 (2004).

    Article  CAS  Google Scholar 

  25. M.C. J. Bradford and M.A. Vannice, Appl. Catal., 142, 73 (1996).

    Article  CAS  Google Scholar 

  26. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Fifth Ed., A Wiley-Interscience, New York (1988).

    Google Scholar 

  27. A.W. Budiman, S. H. Song, T. S. Chang, C.H. Shin and M. J. Choi, Catal. Surv. Asia, 16, 183 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae-Sun Chang or Chae-Ho Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, SH., Son, JH., Budiman, A.W. et al. The influence of calcination temperature on catalytic activities in a Co based catalyst for CO2 dry reforming. Korean J. Chem. Eng. 31, 224–229 (2014). https://doi.org/10.1007/s11814-013-0211-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0211-8

Keywords

Navigation