Skip to main content
Log in

Optimization of Fenton process for refinery wastewater biodegradability augmentation

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The Fenton process was used to increase the biodegradability of refinery wastewater. Initially, effects of reaction time, H2O2/COD and H2O2/Fe2+ molar ratios were investigated and biodegradability of wastewater was determined in terms of the BOD5/COD ratio. Preliminary results showed that the Fenton process was able to improve wastewater biodegradability from 0.27 to 0.43. Subsequently, the process was optimized by using response surface methodology based on a five-level central composite design. Adequacy and significance of results were analyzed in analysis of variance. The quadratic model was found to be significant to give less than 0.05 probability of error. The model was fit with data based on insignificant of lack-of-fit test at values of 0.93. The high R2 and Adj.R2 (0.95 and 0.91) indicates satisfactory adjustment of quadratic model to experimental data. Based on optimized conditions, wastewater biodegradability improved to 0.44 via H2O2/COD and H2O2/Fe2+ molar ratios of 2.8 and 4 within 71 minutes reaction time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Alva-Argáez, A. C. Kokossis and R. Smith, Chem. Eng. J., 128, 33 (2007).

    Article  Google Scholar 

  2. M. Farhadiah, C. Vachelad, D. Duchez and C. Larroche, J. Biotechnol., 99, 5296 (2007).

    Google Scholar 

  3. United States Environmental Protection Agency, Technical Support Document for the 2004 Effluent Guidelines, Unites States (2008).

    Google Scholar 

  4. A. Malakahmad, A. Hasani, M. Eisakhani and M. H. Isa, J. Hazard. Mater., 191, 118 (2011).

    Article  CAS  Google Scholar 

  5. C. S. D. Rodrigues, R. A.R. Boaventura and L.M. Madeira, J. Adv. Oxid. Technol., 15, 78 (2012).

    CAS  Google Scholar 

  6. J. C. Sin, S. M. Lam and A. R. Mohamed, Korean J. Chem. Eng., 28, 84 (2011).

    Article  CAS  Google Scholar 

  7. N. Klamertha, L. Rizzoc, S. Malatoa, M. I. Maldonadoa, A. Agüera and A. R. Fernández-Alba, Water Res., 44, 545 (2010).

    Article  Google Scholar 

  8. S. Baumgarten, H. FSchröder, C. Charwath, M. Lange, S. Beier and J. Pinnekamp, Water Sci. Technol., 56, 1 (2007).

    CAS  Google Scholar 

  9. I. Oller, S. Malato and J. A. Sánchez-Pérez, Sci. Tot. Environ., 409, 4141 (2011).

    Article  CAS  Google Scholar 

  10. G. B. Tabrizi and M. Mehrvar, J. Environ. Sci. Health (A), 39, 3029 (2004).

    Article  Google Scholar 

  11. D. F. Ollis, Water Sci. Technol., 44, 117 (2001).

    CAS  Google Scholar 

  12. S. Ledakowicz, M. Solecka and R. Zylla, J. Biotechnol., 89, 175 (2001).

    Article  CAS  Google Scholar 

  13. A. Gürses, M. Yalc and C. Dgar, Waste Manage., 22, 491 (2002).

    Article  Google Scholar 

  14. M. Ahmadi, F. Vahabzadeh, B. Bonakdarpour, E. Mofarrah and M. Mehranian, J. Hazard. Mater., 123, 187 (2005).

    Article  CAS  Google Scholar 

  15. M. Ghanbarzadeh Lak, M. R. Sabour, A. Amiri and O. Rabbani, Waste Manage., 32, 1895 (2012).

    Article  Google Scholar 

  16. J. Y. Park and I. H. Lee, Korean J. Chem. Eng., 26, 387 (2009).

    Article  CAS  Google Scholar 

  17. P. Ghosh, L. K. Thakur, A. N. Samanta and S. Ray, Korean J. Chem. Eng., 29, 1203 (2012).

    Article  CAS  Google Scholar 

  18. Y. Lee, S. Bae and W. Lee, Korean J. Chem. Eng., 29, 769 (2012).

    Article  CAS  Google Scholar 

  19. B. Bianco, I. De Michelis and F. Vegliò, J. Hazard. Mater., 186, 1733 (2011).

    Article  CAS  Google Scholar 

  20. APHA, Standard methods for the examination of water and wastewater, 21. Ed., A.W.W. Association, Ed. Washington D.C., Water Pollution Control Federation, USA (2005).

  21. M. A. Zarooni and W. Elshorbagy, J. Hazard. Mater., 136, 398 (2006).

    Article  Google Scholar 

  22. Metcalf & Eddy, Wastewater engineering: Treatment and reuse, McGraw-Hill Inc., New York (2003).

    Google Scholar 

  23. L. S. Villar and L. A. Escaleira, Talanta, 76, 965 (2008).

    Article  Google Scholar 

  24. A. Coelho, V. A. Castro, M. Dezotti and Jr. G. L. Sant’ Anna, J. Hazard. Mater., 137, 178 (2006).

    Article  CAS  Google Scholar 

  25. L. Chu, J. Wang, J. Dong, H. Liu and X. Sun, Chemosphere, 86, 409 (2012).

    Article  CAS  Google Scholar 

  26. N. S. S. Martínez, J. F. Fernández, X. F. Segura and A. S. Ferrer, J. Hazard. Mater., 101, 315 (2003).

    Article  Google Scholar 

  27. A. Žgajnar Gotvajn and J. Zagorc-Konèan, Acta Chim. Slov., 52, 131 (2005).

    Google Scholar 

  28. Y.W. Kang and K. Y. Hwang, Water Res., 34, 2786 (2002).

    Article  Google Scholar 

  29. E.G. Solozhenko, N. M. Soboleva and V.V. Goncharuk, Water Res., 29, 2206 (1995).

    Article  CAS  Google Scholar 

  30. I. Casero, D. Sicilia, S. Rubio and D. Perez-Bendito, Water Res., 31, 1985 (1997).

    Article  CAS  Google Scholar 

  31. E. C. Catalkaya and F. Kargi, J. Hazard. Mater., 139, 244 (2007).

    Article  CAS  Google Scholar 

  32. J. Li, Z. Luan, L. Yu and Z. Ji, Desalination, 284, 62 (2012).

    Article  CAS  Google Scholar 

  33. V. Kavitha and K. Palanivelu, Water Res., 39, 3062 (2005).

    Article  CAS  Google Scholar 

  34. E. M. Siedlecka and P. Stepnowski, Pol. J. Environ. Stud., 14, 823 (2005).

    CAS  Google Scholar 

  35. C. T. Benatti, C. R.G. Tavares and T.A. Guedes, J. Environ. Manage., 80, 66 (2006).

    Article  CAS  Google Scholar 

  36. A. Ghalina, in Department of Robotics and Mechatronics, AGHUniversity of Science and Technology, Krakow, Poland (2009).

    Google Scholar 

  37. M.Y. Nordin, V. C. Venkatesh, S. Sharif, S. Elting and A. Abdullah, J. Mater. Proc. Technol., 145, 46 (2004).

    Article  Google Scholar 

  38. Y. Mansouri, A. A. L. Zinatizadeh, P. Mohammadi, M. Irandoust, A. Akhbari and R. Davoodi, Korean J. Chem. Eng., 29, 891 (2012).

    Article  CAS  Google Scholar 

  39. Q. Beg, V. Sahai and R. Gupta, Process Biochem., 39, 203 (2003).

    Article  CAS  Google Scholar 

  40. A. Akhbari, A.A. L. Zinatizadeh, P. Mohammadi, M. Irandoust and Y. Mansouri, Chem. Eng. J., 168, 269 (2011).

    Article  CAS  Google Scholar 

  41. F. Shahrezaei, Y. Mansouri, A. A. L. Zinatizadeh and A. Akhbari, Powder Technol., 221, 203 (2012).

    Article  CAS  Google Scholar 

  42. R. J. Watts, M. D. Udell, P. A. Rauch and S.W. Leung, Hazard. Waste Hazard. Mater., 7, 335 (1990).

    Article  CAS  Google Scholar 

  43. Ch. Welling, Account. Chem. Res., 8, 125 (1975).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Malakahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishak, S., Malakahmad, A. Optimization of Fenton process for refinery wastewater biodegradability augmentation. Korean J. Chem. Eng. 30, 1083–1090 (2013). https://doi.org/10.1007/s11814-013-0002-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0002-2

Key words

Navigation