Skip to main content

Advertisement

Log in

Comparison of cost and treatment efficiency of solar assisted advance oxidation processes for textile dye bath effluent

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The study investigated the efficiency and cost effectiveness of solar-assisted photochemical processes in comparison with advance oxidation processes (AOPs) for the textile effluents treatment. Efficiency of UV irradiation alone for one hour in removing color was almost double in comparison to solar radiation alone for effluents of different dye concentrations (E1>E2>E3). For coupled UV/H2O2 process, there was higher color removal efficiency obtained for effluent E3 (85%) as compared to E2 (70%) and E1 (57%), while E1 showed higher COD removal efficiency (70%) as compared to E2 (50%) and E3 (62%). However, the efficiency of solar/H2O2 for COD removal was comparable to UV/H2O2, i.e., E2 (57%) and E3 (53%). In the case of UV and solar-assisted photo-Fenton processes, removal efficiency of the UV process was further increased as approached to almost 90% removal for E1; on the other hand, the solar-assisted process efficiency remained the same. The relative efficiencies of AOPs were found to be in the order of UV assisted photo-Fenton process>UV/H2O2>UV alone. Although, solar-assisted Fenton treatments were relatively low and slow but without any energy consumption in comparison to high energy consumption of UV. Among the UV processes, UV assisted photo-Fenton treatment appeared to have better color removal efficiency with energy requirements of 5 kWh/m3, 8 kWh/m3 and 3 kWh/m3 for E1, E2 and E3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. K. Gupta and Suhas, J. Environ. Manage., 90(8), 2313 (2009).

    Article  CAS  Google Scholar 

  2. B. Manu and S. Chaudhari, Biores. Technol., 82, 225 (2002).

    Article  CAS  Google Scholar 

  3. H. Park and W. Choi, J. Photochem. Photobiol. A-Chem., 159, 241 (2003).

    Article  CAS  Google Scholar 

  4. S.M. Lucas and A. J. Peres, Dyes. Pigm., 74, 622 (2007).

    Article  CAS  Google Scholar 

  5. A. Yasar, A. Nasir and A. A. K. Aamir, J. Color Technol., 122(4), 201 (2006).

    Article  CAS  Google Scholar 

  6. L. Rizzo, Water Res., 45, 4311 (2011).

    Article  CAS  Google Scholar 

  7. V. J. P. Vilar, L. X. Pinho, A.M. A. Pintor and R. A. R. Boaventura, Sol. Energy, 85, 1927 (2011).

    Article  CAS  Google Scholar 

  8. P. J. D. Ranjit, K. Palanivelu and C.-S. Lee, Korean J. Chem. Eng., 25(1), 112 (2008).

    Article  CAS  Google Scholar 

  9. T. L. P. Dantas, V. P. Mendonca, H. J. Jose, A. E. Rodrigues and R. F. P. M. Moreira, Chem. Eng. J., 118, 77 (2006).

    Article  CAS  Google Scholar 

  10. A. Menendez, J. I. Lombrana and A. de Luis, Korean J. Chem. Eng., 28(2), 388 (2011).

    Article  CAS  Google Scholar 

  11. J.Y. Park and I. H. Lee, Korean J. Chem. Eng., 26(2), 387 (2011).

    Article  Google Scholar 

  12. N. Azbar, T. Yonar and K. Kestioglu, Chemosphere, 55, 35 (2004).

    Article  CAS  Google Scholar 

  13. S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown and M.A. Hashib, Water Air Soil. Pollut., 215, 3 (2011).

    Article  CAS  Google Scholar 

  14. Y. O. Kim, H.U. Nam, Y. R. Park, J. H. Lee, T. J. Park and T. H. Lee, Korean J. Chem. Eng., 21(4), 801 (2004).

    Article  Google Scholar 

  15. Y. Lee, S. Bae and W. Lee, Korean J. Chem. Eng., 29(6), 769 (2012).

    Article  CAS  Google Scholar 

  16. F. Sciacca, J. A. Rengifo-Herrera, J. Wethe and C. Pulgarin, Sol. Energy, 85, 1399 (2011).

    Article  CAS  Google Scholar 

  17. S. Wadley and T. D. Waite, Photo-Fenton Oxidation of Pesticides. Enviro 2002 Convention and Exhibition and IWA 3rd World Water Congress, Melbourne, Australia, 7–12 April, 569 (2002).

  18. A. Yasar, N. Ahmad, A. A. A. Khan and A. Yousaf, J. Environ. Sci., 19, 1183 (2007).

    Article  CAS  Google Scholar 

  19. I. Oller, S. Malato and J. S. Sánchez-Pérez, Sci. Total Environ., 409, 4141 (2011).

    Article  CAS  Google Scholar 

  20. I. A. Arslan and A. B. Isil, J. Chem. Technol. Biotechol., 76, 53 (2001).

    Article  CAS  Google Scholar 

  21. A. Yasar and A. B. Tabinda, Pol. J. Environ. Stud, 19(5), 1051 (2010).

    Google Scholar 

  22. APHA/AWWA/WEF (American Public Health Association, American Water Works Association, Environment Federation), Standards for examination of water and waste water, 21st Ed. United Book Press, Baltimore, MD (2005).

    Google Scholar 

  23. Z. Eren, F. N. Acar and N. H. Eren, Color Technol., 126(6), 337 (2010).

    Article  CAS  Google Scholar 

  24. A. Aleboyed, Y. Moussa and H. Aleboyed, Dyes. Pigm., 66, 129 (2005).

    Article  Google Scholar 

  25. Y. H. Huang, Y. F. Huang, P. S. Chang and C.Y. Chen, J. Hazard. Mater., 154(1–3), 655 (2008).

    Article  Google Scholar 

  26. H. Khan, N. Ahmad, A. Yasar and R. Shahid, Pol. J. Environ. Stud, 19(1), 83 (2010).

    Google Scholar 

  27. H. Kusic, N. Koprivanac, S. Horvat, S. Bakija and A. L. Bozic, Chem. Eng. J., 155(1–2), 144 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Yasar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yasar, A., Khalil, S., Tabinda, A.B. et al. Comparison of cost and treatment efficiency of solar assisted advance oxidation processes for textile dye bath effluent. Korean J. Chem. Eng. 30, 131–138 (2013). https://doi.org/10.1007/s11814-012-0110-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0110-4

Key words

Navigation