Skip to main content
Log in

Seismic analysis of diagrid structural frames with shear-link fuse devices

  • Technical Papers
  • Published:
Earthquake Engineering and Engineering Vibration Aims and scope Submit manuscript

Abstract

This paper presents a new concept for enhancing the seismic ductility and damping capacity of diagrid structural frames by using shear-link fuse devices and its seismic performance is assessed through nonlinear static and dynamic analysis. The architectural elegancy of the diagrid structure attributed to its triangular leaning member configuration and high structural redundancy make this system a desirable choice for tall building design. However, forming a stable energy dissipation mechanism in diagrid framing remains to be investigated to expand its use in regions with high seismicity. To address this issue, a diagrid framing design is proposed here which provides a competitive design option in highly seismic regions through its increased ductility and improved energy dissipation capacity provided by replaceable shear links interconnecting the diagonal members at their ends. The structural characteristics and seismic behavior (capacity, stiffness, energy dissipation, ductility) of the diagrid structural frame are demonstrated with a 21-story building diagrid frame subjected to nonlinear static and dynamic analysis. The findings from the nonlinear time history analysis verify that satisfactory seismic performance can be achieved by the proposed diagrid frame subjected to design basis earthquakes in California. In particular, one appealing feature of the proposed diagrid building is its reduced residual displacement after strong earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AISC (2005), “Seismic Provisions for Structural Steel Buildings,” ANSI/AISC 341-05, Chicago, IL.

    Google Scholar 

  • ASCE (2010), “Minimum Design Loads for Buildings and Other Structures,” ASCE/SEI 7-10/ANSI, Reston, Va.

    Google Scholar 

  • Hjelmstad KD and Popov EP (1983), “Cyclic Behavior and Design of Link Beams,” J. Struct. Eng., ASCE, 109(10): 2387–2403.

    Article  Google Scholar 

  • Kasai K and Popov EP (1986), “General Behavior of WF Steel Shear Link Beams,” Struct. Eng., ASCE, 112(2): 362–382.

    Article  Google Scholar 

  • Kim J and Lee YH (2009), “Progressive Collapse Resisting Capacity of Tube-type Structures,” The Structural Design of Tall and Special Buildings, 10: 1002/tal.512.

  • Kim YJ, Jung IY, Ju Y-K, Park SJ and Kim SD (2011), “Cyclic Behavior of Diagrid Nodes with H-section Braces,” J. Struct. Eng., ASCE, 136(9): 1111–1122.

    Article  Google Scholar 

  • Leonard J (2007), “Investigation of Shear Lag Effect in High-rise Buildings with Diagrid System,” M.Sc. Thesis, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology

    Google Scholar 

  • Li L, Zhao X and Ke K (2011), “Static Behavior of Planar Intersecting CFST Connection in Diagrid Structure,” Frontiers of Architecture and Civil Engineering in China, 5(3): 355–365.

    Article  Google Scholar 

  • Mansour N, Shen Y, Christopoulos C and Tremblay R (2008), “Seismic Design of EBF Steel Frames Using Replaceable Nonlinear Links,” Proc. 14th World Conference on Earthquake Engineering, Beijing, China.

    Google Scholar 

  • Mazzoni S, McKenna F, Scott MH and Fenves GL (2009), The Open System for Earthquake Engineering Simulation (OpenSEES) User Command-Language Manual, Pacific Earthquake Eng. Research Center, Univ. Calif., Berkeley, CA, (http://opensees.berkeley.edu).

    Google Scholar 

  • McKenna FT (1997), “Object-oriented Finite Element Programming: Frameworks for Analysis, Algorithms and Parallel Computing,” Ph.D. Thesis, University of California, Berkeley, CA, United States, 1997.

    Google Scholar 

  • Menegotto M and Pinto PE (1973), “Method of Analysis of Cyclically Loaded RC Plane Frames Including Changes in Geometry and Non-elastic Behavior of Elements under Normal Force and Bending, Preliminary Report,” IABSE, Vol. 13, pp. 15–22.

    Google Scholar 

  • Moon K-S, Connor JJ and Fernandez JE (2007), “Diagrid Structural Systems for Tall Buildings: Characteristics and Methodology for Preliminary Design,” The Structural Design of Tall and Special Buildings, 16: 205–230.

    Article  Google Scholar 

  • Okazaki T, Arce G, Ryu H-C and Engelhardt MD (2005), “Experimental Study of Local Buckling, Overstrength, and Fracture of Links in Eccentrically Braced Frames,” J. Struct. Eng., ASCE, 131(10): 1526–1535.

    Article  Google Scholar 

  • Okazaki T and Engelhardt MD (2007), “Cyclic Loading Behavior of EBF Links Constructed of ASTM A992 steel,” J. of Construction Steel Research., 63: 751–765.

    Article  Google Scholar 

  • Okazaki T, Engelhardt MD, Nakashima M and Suita K (2006), “Experimental Performance of Link-to-column Connections in Eccentrically Braced Frames,” J. Struct. Eng., ASCE, 132(8): 1201–1211.

    Article  Google Scholar 

  • Rahimian A and Eilon Y (2007), “Something Old, Something New,” Modern Steel Construction, AISC, April 2007.

    Google Scholar 

  • Ramadan T and Ghobarah A (1995), “Analytical Model for Shear-link Behavior,” J. Struct. Eng., ASCE, 121(11): 1574–1580.

    Article  Google Scholar 

  • Richards PW (2004), “Cyclic Stability and Capacity Design of Steel Eccentrically Braced Frames,” Doctoral dissertation, Univ. of California, San Diego.

    Google Scholar 

  • Richards PW and Uang C-M (2005), “Effect of Flange Width Thickness Ratio on Eccentrically Braced Frame Link Cyclic Rotation Capacity,” J. Struct. Eng., ASCE, 131(10): 1546–1552.

    Article  Google Scholar 

  • Ricles JM and Popov EP (1987), “Dynamic Analysis of Seismically Resistant Eccentrically Braced Frames,” Rep. No.VCBIEERC-87107, Earthquake Engrg. Res. Ctr., Univ. of California, Berkeley, Calif.

    Google Scholar 

  • Somerville P, Smith N, Punyamurthula S and Sun J (1997), “Development of Ground Motion Time Histories for Phase 2 of the FEMA/SAC Steel Project,” SAC/BD-97/04, SAC Joint Venture, Sacramento, CA.

    Google Scholar 

  • Taranath B (1997), Steel, Concrete, & Composite Design of Tall Buildings, McGraw-Hill, Second Edition.

    Google Scholar 

  • Teng J, Guo W, Rong B and Li Z (2011), “Seismic Performance Research of High-rise Diagrid Tube-core Tube Structures,” Advanced Materials Research, 163–167, 2005–2012.

    Google Scholar 

  • Zareian F and Medina RA (2010), “A Practical Method for Proper Modeling of Structural Damping in Inelastic Plane Structural Systems,” Computers & Structures, 88(1–2): 45–53.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moghaddasi B, N.S., Zhang, Y. Seismic analysis of diagrid structural frames with shear-link fuse devices. Earthq. Eng. Eng. Vib. 12, 463–472 (2013). https://doi.org/10.1007/s11803-013-0186-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11803-013-0186-9

Keywords

Navigation