Skip to main content
Log in

Establishing Gene Delivery Systems Based on Small-Sized Chitosan Nanoparticles

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Chitosan is a natural cationic polysaccharide, which is often used for preparing biomedical materials because of its high biocompatibility. In this study, chitosan with a molecular weight of 160 kDa was chosen to prepare chitosan nanoparticles (CSNPs) as gene vectors by ionic cross-linking with tripolyphosphate (TPP). CSNPs were characterized in terms of particle size, zeta potential, and polydispersity index (PDI) using a Zetasizer, and morphology was evaluated by transmission electron microscopy (TEM). Furthermore, the cytotoxicity and biocompatibility of CSNPs were correspondingly examined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and histological examination. Agarose gel electrophoresis and UV spectrophotometric methods were performed to measure the loading capacity. The cell transfection efficiency of CSNPs loaded with plasmids or siRNA was analyzed by fluorescence microscopy or laser scanning confocal microscopy. The results showed that CSNPs were prepared successfully by the ionic gelation method, which had a smaller particle size (100 nm −200 nm), stable dispersibility, low cytotoxicity, good tissue-biocompatibility, and high gene-loading efficiency. These CSNPs could transfer the plasmids or siRNA to cells. However, CSNPs might have a much higher transfection efficiency for siRNAs than for plasmids, which implies that CSNPs might be a safer and more efficient vector for delivering siRNAs rather than plasmids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Calvo, P., Remuñán-López, C., Vila-Jato, J. L., and Alonso, M. J., 1997. Development of positively charged colloidal drug carriers: Chitosan-coated polyester nanocapsules and submicron-emulsions. Colloid and Polymer Science, 275 (1): 46–53, DOI: 10.1007/s003960050050.

    Article  Google Scholar 

  • Chowdhuri, A. R., Singh, T., Ghosh, S. K., and Sahu, S. K., 2016. Carbon dots embedded magnetic nanoparticles @chitosan @metal organic framework as a nanoprobe for pH sensitive targeted anticancer drug delivery. ACS Applied Materials & Interfaces, 8 (26): 16573–16583, DOI: 10.1021/acsami.6b03988.

    Article  Google Scholar 

  • Dash, M., Chiellini, F., Ottenbrite, R. M., and Chiellini, E., 2011. Chitosan–A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science, 36: 981–1014, DOI: 10.1016/j.progpolymsci.2011.02.001.

    Article  Google Scholar 

  • Ewert, K. K., Ahmad, A., Evans, H. M., and Safinya, C. R., 2005. Cationic lipid-DNA complexes for non-viral gene therapy: Relating supramolecular structures to cellular pathways. Expert Opinion on Biological Therapy, 5 (1): 33–53, DOI: 10.1517/14712598.5.1.33.

    Article  Google Scholar 

  • Hosseini, M., Haji-Fatahaliha, M., Jadidi-Niaragh, F., Majidi, J., and Yousefi, M., 2016. The use of nanoparticles as a promising therapeutic approach in cancer immunotherapy. Artificial Cells, Nanomedicine, and Biotechnology, 44 (4): 1051–1061, DOI: 10.3109/21691401.2014.998830.

    Google Scholar 

  • Howard, K. A., Rahbek, U. L., Liu, X., Damgaard, C. K., Glud, S. Z., Andersen, M. Ø., Hovgaard, M. B., Schmitz, A., Nyengaard, J. R., Besenbacher, F., and Kjems, J., 2006. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Molecular Therapy, 14 (4): 476–484, DOI: 10.1016/j.ymthe.2006.04.010.

    Article  Google Scholar 

  • Hu, F. Q., Ren, G. F., Yuan, H., Du, Y. Z., and Zeng, S., 2006. Shell cross-linked stearic acid grafted chitosan oligosaccharide self-aggregated micelles for controlled release of paclitaxel. Colloids and Surfaces B: Biointerfaces, 50 (2): 97–103, DOI: 10.1016/j.colsurfb.2006.04.009.

    Article  Google Scholar 

  • Jadidi-Niaragh, F., Atyabi, F., Rastegari, A., Mollarazi, E., Kiani, M., Razavi, A., Yousefi, M., Kheshtchin, N., Hassannia, H., Hadjati, J., and Shokri, F., 2016. Downregulation of CD73 in 4T1 breast cancer cells through siRNA-loaded chitosan-lactate nanoparticles. Tumor Biology, 37 (6): 8403–8412, DOI: 10.1007/s13277-015-4732-0.

    Article  Google Scholar 

  • Jain, A., Thakur, K., Sharma, G., Kush, P., and Jain, U. K., 2016. Fabrication, characterization and cytotoxicity studies of ionically cross-linked docetaxel loaded chitosan nanoparticles. Carbohydrate Polymers, 137: 65–74, DOI: 10.1016/j.carbpol.2015.10.012.

    Article  Google Scholar 

  • Li, F., Chen, W. L., You, B. G., Liu, Y., Yang, S. D., Yuan, Z. Q., Zhu, W. J., Li, J. Z., Qu, C. X., Zhou, Y. J., Zhou, X. F., Liu, C., and Zhang, X. N., 2016. Enhanced cellular internalization and on-demand intracellular release of doxorubicin by stepwise pH-/reduction-responsive nanoparticles. ACS Applied Materials & Interfaces, 8 (47): 32146–32158, DOI: 10.1021/acsami.6b09604.

    Article  Google Scholar 

  • Liang, Y., Liu, W. S., Han, B. Q., Yang, C. Z., Ma, Q., Zhao, W. W., Rong, M., and Li, H., 2011. Fabrication and characters of a corneal endothelial cells scaffold based on chitosan. Journal of Materials Science: Materials in Medicine, 22 (1): 175–183, DOI: 10.1007/s10856-010-4190-6.

    Google Scholar 

  • Liu, C. G., Tan, Y. L., Liu, C. S., Chen, X. G., and Yu, L. J., 2007. Preparations, characterizations and applications of chitosan-based nanoparticles. Journal of Ocean University of China, 6 (3): 237–243, DOI: 10.1007/s11802-007-0237-9.

    Article  Google Scholar 

  • Liu, C. G., Desai, K. G. H., Chen, X. G., and Park, H. J., 2005. Preparation and charaterization of self-assembled nanoparticles based on linolenic-acid modified chitosan. Journal of Ocean University of China, 4 (3): 234–239, DOI: 10.1007/s11802-005-0039-x.

    Article  Google Scholar 

  • Makhlof, A., Tozuka, Y., and Takeuchi, H., 2011. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. European Journal of Pharmaceutical Sciences, 42 (5): 445–451, DOI: 10.1016/j.ejps.2010.12.007.

    Article  Google Scholar 

  • Pillai, C. K. S., Paul, W., and Sharma, C. P., 2009. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science, 34 (7): 641–678, DOI: 10.1016/j.progpolymsci.2009.04.001.

    Article  Google Scholar 

  • Puras, G., Zarate, J., Aceves, M., Murua, A., Diaz, A. R., Aviles-Triguero, M., Fernandez, E., and Pedraz, J. L., 2013. Low molecular weight oligochitosans for non-viral retinal gene therapy. European Journal of Pharmaceutics and Biopharmaceutics, 83 (2): 131–140, DOI: 10.1016/j.ejpb.2012.09.010.

    Article  Google Scholar 

  • Qian, F., Cui, F., Ding, J., Tang, C., and Yin, C., 2006. Chitosan graft copolymer nanoparticles for oral protein drug delivery: Preparation and characterization. Biomacromolecules, 7 (10): 2722–2727, DOI: 10.1021/bm060065f.

    Article  Google Scholar 

  • Reverchon, E., and Antonacci, A., 2006. Chitosan microparticles production by supercritical fuild processing. Industrial & Engineering Chemistry Research, 45 (16): 5722–5728, DOI: 10.1021/ie060233k.

    Article  Google Scholar 

  • Shen, B., Ma, Y., Yu, S., and Ji, C., 2016. Smart multifunctional magnetic nanoparticle-based drug delivery system for cancer thermo-chemotherapy and intracellular imaging. ACS Applied Materials & Interfaces, 8 (37): 24502–24508, DOI: 10.1021/acsami.6b09772.

    Article  Google Scholar 

  • Singla, A. K., and Chawla, M., 2001. Chitosan: Some pharmaceutical and biological aspects–An update. Journal of Pharmacy and Pharmacology, 53 (8): 1047–1067, DOI: 10.1211/0022357011776441.

    Article  Google Scholar 

  • Storrie, H., and Mooney, D. J., 2006. Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering. Advanced Drug Delivery Reviews, 58 (4): 500–514, DOI: 10.1016/j.addr.2006.03.004.

    Article  Google Scholar 

  • Sung, H. W., Sonaje, K., Liao, Z. X., Hsu, L. W., and Chuang, E. Y., 2012. PH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: From mechanism to therapeutic applications. Accounts of Chemical Research, 45 (4): 619–629, DOI:10.1021/ar200234q.

    Article  Google Scholar 

  • Tahamtan, A., Tabarraei, A., Moradi, A., Dinarvand, M., Kelishadi, M., Ghaemi, A., and Atyabi, F., 2015. Chitosan nanoparticles as a potential nonviral gene delivery for HPV-16 E7 into mammalian cells. Artificial Cells, Nanomedicine, and Biotechnology, 43 (6): 366–372, DOI: 10.3109/21691401.2014.893522.

    Article  Google Scholar 

  • Tsai, M. L., Chen, R. H., Bai, S. W., and Chen, W. Y., 2011. The storage stability of chitosan/tripolyphosphate nanoparticles in a phosphate buffer. Carbohydrate Polymers, 84 (2): 756–761, DOI: 10.1016/j.carbpol.2010.04.040.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (No. ZR2014HP011), Qingdao Young Scientist Applied Basic Research Fund (No. 15-9-1-51-jch), Youth Foundation of The Affiliated Hospital of Qingdao University (No. 2417), and the National Natural Science Foundation of China (No. 8140 1899).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, W., Zhou, Q. et al. Establishing Gene Delivery Systems Based on Small-Sized Chitosan Nanoparticles. J. Ocean Univ. China 17, 1253–1260 (2018). https://doi.org/10.1007/s11802-018-3658-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-018-3658-8

Key words

Navigation