Skip to main content
Log in

Improving effect of carbonized quantum dots (CQDs) in pure copper matrix composites

碳量子点(CQD)在纯铜基复合材料中的增强作用

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Carbon quantum dots (CQDs), which contain a core structure composed of sp2 carbon, can be used as the reinforcing phase like graphene and carbon nanotubes in metal matrix. In this paper, the CQD/Cu composite material was prepared by powder metallurgy method. The composite powder was prepared by molecular blending method and ball milling method at first, and then densified into bulk material by spark plasma sintering (SPS). X-ray diffraction, Raman spectroscopy, infrared spectroscopy, and nuclear magnetic resonance were employed to characterize the CQD synthesized under different temperature conditions, and then CQDs with a higher degree of sp2 were utilized as the reinforcement to prepare composite materials with different contents. Mechanical properties and electrical conductivity results show that the tensile strength of the 0.2 CQD/Cu composite material is ∼31% higher than that of the pure copper sample, and the conductivity of 0.4 CQD/Cu is ~96% IACS, which is as high as pure copper. TEM and HRTEM results show that good interface bonding of CQD and copper grain is the key to maintaining high mechanical and electrical conductivity. This research provides an important foundation and direction for new carbon materials reinforced metal matrix composites.

摘要

碳量子点(CQD)的核心结构为sp2 碳,可以像石墨烯和碳纳米管一样作为金属基体中的增强相。 本文采用粉末冶金法制备了 CQD/Cu 复合材料,先用分子共混法和球磨法制备复合粉末,再用放电等 离子烧结(SPS)致密化成块状材料。利用X 射线衍射、拉曼光谱、红外光谱和核磁共振对不同温度条 件下合成的 CQD 进行表征,然后利用sp2 含量较高的 CQD 作为增强剂制备不同含量的复合材料。力 学性能和电导率结果表明: 0.2 CQD/Cu 复合材料的抗拉强度比纯铜试样高∼31%, 0.4 CQD/Cu 复合材 料的电导率为 ~96% IACS,与纯铜相当。 TEM 和HRTEM 结果表明, CQD 与铜晶粒良好的界面结合 是保持高力学性能和电导率的关键。本研究为新型碳材料增强金属基复合材料的研制提供了重要的基 础和方向。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. BAKER S, BAKER G. Luminescent carbon nanodots: Emergent nanolights [J]. Angewandte Chemie International Edition, 2010, 49(38): 6726–6744. DOI: https://doi.org/10.1002/anie.200906623.

    Article  Google Scholar 

  2. ZHU Shou-jun, MENG Qing-nan, WANG Lei, ZHANG Jun-hu, SONG Yu-bin, JIN Han, ZHANG Kai, SUN Hong-chen, WANG Hai-yu. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging [J]. Angewandte Chemie International Edition, 2013, 52(14): 3953–3957. DOI: https://doi.org/10.1002/anie.201300519.

    Article  Google Scholar 

  3. ROY P, CHEN P, PERIASAMY AP, CHEN Y, CHANG H. Photoluminescent carbon nanodots: Synthesis, physicochemical properties and analytical applications [J]. Materials Today, 2015, 18(8): 447–458.

    Article  Google Scholar 

  4. ZHOU Jin, ZHOU Hui, TANG Jin-bao, DENG Shu-e, YAN Fang, LI Wen-jing, QU Mei-hua. Carbon dots doped with heteroatoms for fluorescent bioimaging: A review [J]. Microchimica Acta, 2017, 184(2): 343–368. DOI: https://doi.org/10.1007/s00604-016-2043-9.

    Article  Google Scholar 

  5. ZHAO Wen-min, BAO Rui, YI Jian-hong, FANG Dong, LI Cai-ju, TAO Jing-mei, LI Feng-xian, LIU Yi-chun, YOU Xin. Improving mechanical and thermal property of pure copper matrix simultaneously by carbonized polymer dots (CPD) cluster reinforcement [J]. Materials Science and Engineering A, 2021, 805: 140573. DOI: https://doi.org/10.1016/j.msea.2020.140573.

    Article  Google Scholar 

  6. SHAMSIPUR M, BARATI A, TAHERPOUR A A, JAMSHIDI M. Resolving the multiple emission centers in carbon dots: From fluorophore molecular states to aromatic domain states and carbon-core states [J]. The Journal of Physical Chemistry Letters, 2018, 9(15): 4189–4198. DOI: https://doi.org/10.1021/acs.jpclett.8b02043.

    Article  Google Scholar 

  7. FANG Qing-qing, DONG Yong-qiang, CHEN Ying-mei, LU Chun-hua, CHI Yu-wu, YANG Huang-hao, YU Ting. Luminescence origin of carbon based dots obtained from citric acid and amino group-containing molecules [J]. Carbon, 2017, 118: 319–326. DOI: https://doi.org/10.1016/j.carbon.2017.03.061.

    Article  Google Scholar 

  8. FU Ming, EHRAT F, WANG Yu, MILOWSKA K Z, RECKMEIER C, ROGACH A L, STOLARCZYK J K, URBAN A S, FELDMANN J. Carbon dots: A unique fluorescent cocktail of polycyclic aromatic hydrocarbons [J]. Nano Letters, 2015, 15(9): 6030–6035. DOI: https://doi.org/10.1021/acs.nanolett.5b02215.

    Article  Google Scholar 

  9. LEE C, WEI X, KYSAR J W, HONE J. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321(5887): 385–388. DOI: https://doi.org/10.1126/science.1157996.

    Article  Google Scholar 

  10. SONG Gui-ming, GUO Ying-kui, ZHOU Yu, LI Qiang. Preparation and mechanical properties of carbon fiber reinforced-TiC matrix composites [J]. Journal of Materials Science Letters, 2001, 20(23): 2157–2160. DOI: https://doi.org/10.1023/A:1013788701303.

    Article  Google Scholar 

  11. SHARMA S, UMAR A, SOOD S, MEHTA S K, KANSAL S K. Photoluminescent C-dots: An overview on the recent development in the synthesis, physiochemical properties and potential applications [J]. Journal of Alloys and Compounds, 2018, 748: 818–853. DOI: https://doi.org/10.1016/j.jallcom.2018.03.001.

    Article  Google Scholar 

  12. YUE Hong-yan, YAO Long-hui, GAO Xin, ZHANG Shao-lin, GUO Er-jun, ZHANG Hong, LIN X, WANG Bao. Effect of ball-milling and graphene contents on the mechanical properties and fracture mechanisms of graphene nanosheets reinforced copper matrix composites [J]. Journal of Alloys and Compounds, 2017, 691: 755–762. DOI: https://doi.org/10.1016/j.jallcom.2016.08.303.

    Article  Google Scholar 

  13. CHEN Xiang-yang, BAO RUI, YI Jian-hong, FANG Dong, TAO Jing-mei, LIU Yi-chun. Enhancing interfacial bonding and tensile strength in CNT-Cu composites by a synergetic method of spraying pyrolysis and flake powder metallurgy [J]. Materials (Basel, Switzerland), 2019, 12(4): E670. DOI: https://doi.org/10.3390/ma12040670.

    Article  Google Scholar 

  14. LIU Liang, BAO Rui, YI Jian-hong, FANG Dong. Fabrication of CNT/Cu composites with enhanced strength and ductility by SP combined with optimized SPS method [J]. Journal of Alloys and Compounds, 2018, 747: 91–99. DOI: https://doi.org/10.1016/j.jallcom.2018.03.029.

    Article  Google Scholar 

  15. XIONG Ni, BAO Rui, YI Jian-hong, TAO Jing-mei, LIU Yi-chun, FANG Dong. Interface evolution and its influence on mechanical properties of CNTs/Cu−Ti composite [J]. Materials Science and Engineering A, 2019, 755: 75–84. DOI: https://doi.org/10.1016/j.msea.2019.03.128.

    Article  Google Scholar 

  16. BOURLINOS A B, STASSINOPOULOS A, ANGLOS D, ZBORIL R, KARAKASSIDES M, GIANNELIS E P. Surface functionalized carbogenic quantum dots [J]. Small, 2008, 4(4): 455–458. DOI: https://doi.org/10.1002/smll.200700578.

    Article  Google Scholar 

  17. ZHU Shou-jun, SONG Yu-bin, ZHAO Xiao-huan, SHAO Jie-ren, ZHANG Jun-hu, YANG Bai. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective [J]. Nano Research, 2015, 8(2): 355–381. DOI: https://doi.org/10.1007/s12274-014-0644-3.

    Article  Google Scholar 

  18. SUBRAMANIAM C, YAMADA T, KOBASHI K, SEKIGUCHI A, FUTABA D N, YUMURA M, HATA K. One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite [J]. Nat Commun, 2013, 4: 2202. DOI: https://doi.org/10.1038/ncomms3202.

    Article  Google Scholar 

  19. LU Lei, SHEN Yong-feng, CHEN Xian-hua, QIAN Li-hua, LU K. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304(5669): 422–426. DOI: https://doi.org/10.1126/science.1092905.

    Article  Google Scholar 

  20. WANG Bei-bei, FU Qian-gang, LIU Yue, YIN Tao, FU Ye-wei. The synergy effect in tribological performance of paper-based composites by MWCNT and GNPs [J]. Tribology International, 2018, 123: 200–208. DOI: https://doi.org/10.1016/j.triboint.2018.03.014.

    Article  Google Scholar 

  21. YANG Ming, WENG Lin, ZHU Han-xing, ZHANG Fan, FAN Tong-xiang, ZHANG Di. Leaf-like carbon nanotube-graphene nanoribbon hybrid reinforcements for enhanced load transfer in copper matrix composites [J]. Scripta Materialia, 2017, 138: 17–21. DOI: https://doi.org/10.1016/j.scriptamat.2017.05.024.

    Article  Google Scholar 

  22. HWANG J, YOON T, JIN S H, LEE J, KIM T S, HONG S H, JEON S. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process [J]. Advanced Materials, 2013, 25(46): 6724–6729. DOI: https://doi.org/10.1002/adma.201302495.

    Article  Google Scholar 

  23. AKBARPOUR M R, ALIPOUR S, FARVIZI M, KIM H S. Mechanical, tribological and electrical properties of Cu-CNT composites fabricated by flake powder metallurgy method [J]. Archives of Civil and Mechanical Engineering, 2019, 19(3): 694–706. DOI: https://doi.org/10.1016/j.acme.2019.02.005.

    Article  Google Scholar 

  24. JIAN Wang, RONG Sheng-li, HONG Zhi-zhang, NI Wang, ZHENG Zhang, HUANG Cheng-zhi. Highly fluorescent carbon dots as selective and visual probes for sensing copper ions in living cells via an electron transfer process [J]. Biosensors and Bioelectronics, 2017, 97: 157–163. DOI: https://doi.org/10.1016/j.bios.2017.05.035.

    Article  Google Scholar 

  25. WANG Huan, LIU Chao-qun, LIU Zhen, REN Jin-song, QU Xiao-gang. Specific oxygenated groups enriched graphene quantum dots as highly efficient enzyme mimics [J]. Small, 2018, 14(13): 1703710. DOI: https://doi.org/10.1002/smll.201703710.

    Article  Google Scholar 

  26. XU Zhi-wei, CHEN Lei, LIU Liang-sen, WU Xiao-qing, CHEN Li. Structural changes in multi-walled carbon nanotubes caused by γ-ray irradiation [J]. Carbon, 2011, 49(1): 350–351. DOI: https://doi.org/10.1016/j.carbon.2010.09.023.

    Article  Google Scholar 

  27. RASHAD M, PAN Fu-sheng, TANG Ai-tao, ASIF M, AAMIR M. Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium [J]. Journal of Alloys and Compounds, 2014, 603: 111–118. DOI: https://doi.org/10.1016/j.jallcom.2014.03.038.

    Article  Google Scholar 

  28. WEI Xia, TAO Jing-mei, LIU Yi-chun, BAO Rui, LI Feng-xian, FANG Dong, LI Cai-ju, YI Jian-hong. High strength and electrical conductivity of copper matrix composites reinforced by carbon nanotube-graphene oxide hybrids with hierarchical structure and nanoscale twins [J]. Diamond and Related Materials, 2019, 99: 107537. DOI: https://doi.org/10.1016/j.diamond.2019.107537.

    Article  Google Scholar 

  29. HWANG J, YOON T, JIN S H, LEE J, KIM T S, HONG S H, JEON S. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process [J]. Advanced Materials, 2013, 25(46): 6724–6729. DOI: https://doi.org/10.1002/adma.201302495.

    Article  Google Scholar 

  30. CHEN Xiang-yang, BAO Rui, YI Jian-hong, FANG Dong, TAO Jing-mei, LI Feng-xian. Enhancing mechanical properties of pure copper-based materials with CrxOy nanoparticles and CNT hybrid reinforcement [J]. Journal of Materials Science, 2021, 56(4): 3062–3077. DOI: https://doi.org/10.1007/s10853-020-05440-6.

    Article  Google Scholar 

  31. DUAN P, ZHI B, COBURN L, HAYNES C L, SCHMIDTROHR K. A molecular fluorophore in citric acid/ethylenediamine carbon dots identified and quantified by multinuclear solid-state nuclear magnetic resonance [J]. Magnetic Resonance in Chemistry, 2020, 58(11): 1130–1138. DOI: https://doi.org/10.1002/mrc.4985.

    Google Scholar 

  32. LI Li-qing, YAO Xiao-long, LI Hai-long, LIU Zheng, MA Wei-wu, LIANG Xin. Thermal stability of oxygen-containing functional groups on activated carbon surfaces in a thermal oxidative environment [J]. Journal of Chemical Engineering of Japan, 2014, 47(1): 21–27. DOI: https://doi.org/10.1252/jcej.13we193.

    Article  Google Scholar 

  33. BRAMFITT B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron [J]. Metallurgical Transactions, 1970, 1(7): 1987–1995. DOI: https://doi.org/10.1007/BF02642799.

    Article  Google Scholar 

  34. LIU Liang, BAO Rui, YI Jian-hong. Mono-dispersed and homogeneous CNT/Cu composite powder preparation through forming Cu2O intermediates [J]. Powder Technology, 2018, 328: 430–435. DOI: https://doi.org/10.1016/j.powtec.2018.01.055.

    Article  Google Scholar 

  35. YANG Ping, YOU Xin, YI Jian-hong, FANG Dong, BAO Rui, SHEN Tao, LIU Yi-chun, TAO Jing-mei, LI Cai-ju. Simultaneous achievement of high strength, excellent ductility, and good electrical conductivity in carbon nanotube/copper composites [J]. Journal of Alloys and Compounds, 2018, 752: 431–439. DOI: https://doi.org/10.1016/j.jallcom.2018.03.341.

    Article  Google Scholar 

  36. GEORGE R, KASHYAP K T, RAHUL R, YAMDAGNI S. Strengthening in carbon nanotube/aluminium (CNT/Al) composites [J]. Scripta Materialia, 2005, 53(10): 1159–1163. DOI: https://doi.org/10.1016/j.scriptamat.2005.07.022.

    Article  Google Scholar 

  37. NAM D H, CHA S I, LIM B K, PARK H M, HAN D S, HONG S H. Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al-Cu composites [J]. Carbon, 2012, 50(7): 2417–2423. DOI: https://doi.org/10.1016/j.carbon.2012.01.058.

    Article  Google Scholar 

  38. ZHU Jian-die, LIU Xia, ZHOU Xiao-huan, YANG Qing-sheng. Strengthening effect of graphene-edge dislocation interaction in graphene reinforced copper matrix composites [J]. Computational Materials Science, 2021, 188: 110179. DOI: https://doi.org/10.1016/j.commatsci.2020.110179.

    Article  Google Scholar 

  39. AKBARPOUR M R, MOUSA MIRABAD H, ALIPOUR S, KIM H S. Enhanced tensile properties and electrical conductivity of Cu-CNT nanocomposites processed via the combination of flake powder metallurgy and high pressure torsion methods [J]. Materials Science and Engineering A, 2020, 773: 138888. DOI: https://doi.org/10.1016/j.msea.2019.138888.

    Article  Google Scholar 

  40. YANG Qian, LIN Chen-xiao, LIU Fang-hua, LI Ling, ZHANG Qiu-gen, ZHU Ai-mei, LIU Qing-lin. Poly (2, 6-dimethyl-1, 4-phenylene oxide)/ionic liquid functionalized graphene oxide anion exchange membranes for fuel cells [J]. Journal of Membrane Science, 2018, 552: 367–376. DOI: https://doi.org/10.1016/j.memsci.2018.02.036.

    Article  Google Scholar 

  41. ZHANG Hao-qin, MA Chuan-ming, WANG Jing-tao, WANG Xu-yang, BAI Hui-juan, LIU Jin-dun. Enhancement of proton conductivity of polymer electrolyte membrane enabled by sulfonated nanotubes [J]. International Journal of Hydrogen Energy, 2014, 39(2): 974–986. DOI: https://doi.org/10.1016/j.ijhydene.2013.10.145.

    Article  Google Scholar 

  42. ZHU Hong, LI Rui, CHEN Nan-jun, WANG Fang-hui, WANG Zhong-ming, HAN Ke-fei. Electrorheological effect induced quaternized poly(2, 6-dimethyl phenylene oxide)-layered double hydroxide composite membranes for anion exchange membrane fuel cells [J]. RSC Advances, 2016, 6(88): 85486–85494. DOI: https://doi.org/10.1039/c6ra14177c.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HUANG Xiao provided the concept and edited the draft of manuscript. BAO Rui conducted the literature review and wrote the first draft of the manuscript. YI Jian-hong edited the draft of manuscript.

Corresponding author

Correspondence to Rui Bao  (鲍瑞).

Additional information

Conflict of interest

HUANG Xiao, BAO Rui, and YI Jian-hong declare that they have no conflict of interest.

Foundation item: Project(52064032) supported by the National Natural Science Foundation of China; Projects(2019ZE001, 202002AB080001) supported by the Yunnan Science and Technology Projects, China; Project (YNWR-QNBJ-2018-005) supported by the Yunnan Ten Thousand Talents Plan Young & Elite Talents, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Bao, R. & Yi, Jh. Improving effect of carbonized quantum dots (CQDs) in pure copper matrix composites. J. Cent. South Univ. 28, 1255–1265 (2021). https://doi.org/10.1007/s11771-021-4693-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4693-y

Key words

关键词

Navigation