Skip to main content
Log in

Influence of excavation beneath existing building on dynamic impedances of underpinning pile considering stress history

考虑应力历史的增层开挖对托换桩动力阻抗的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The addition of basement beneath existing building changes the underpinning pile from fully embedded to partially embedded, and thus influences the mechanical properties of pile. In the past, scholars paid attention to the change in the bearing capacity of pile but neglected the difference of dynamic characteristics before and after construction, and potential changes in stress history of remaining soil are also ignored. In this work, a calculation model is built to investigate the influence of excavation on dynamic impedance of underpinning pile considering the effect of stress history. The soil is simulated by the dynamic Winkler foundation, which is characterized by springs and dashpots. Properties of remaining soil after excavation are updated to consider the effect of stress history through modifying the initial shear modulus and related parameters. The dynamic impedance of pile after excavation is obtained based on the transfer matrix method. The parameter study is carried out to evaluate the dynamic impedance with various excavation depths, considering or ignoring stress history effect, and various element lengths. The results show that shallow soil plays an important role to dynamic impedance, and overestimated dynamic impedance is obtained if not considering the stress history effect.

摘要

在既有建筑物下增设地下室会使得托换桩从完全埋入状态变为部分埋入状态, 从而改变桩基的力学性能. 过去学者们主要研究桩的承载力变化, 而对施工造成的动力特性变化关注较少, 也没有考虑土体开挖造成深层土的应力历史变化. 本文建立了能够考虑应力历史效应的开挖后桩基动力阻抗计算模型, 并研究了土体开挖的影响. 在动力 Winkler 地基上用弹簧和阻尼器模拟土体. 通过计算初始剪切模量和其他相关参数, 对开挖后残余土体的力学参数进行修正, 以考虑应力历史的影响. 基于传递矩阵法获得了开挖后桩的动力阻抗. 随后对开挖深度、 应力历史以及分段长度等参数进行了分析. 结果表明, 浅层土体的约束作用对动阻抗起到了重要作用, 如不考虑应力历史可能会高估动力阻抗.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WEN Ying-wen, LIU Song-yu, HU Ming-liang, ZHANG Guo-zhu. Deformation control techniques for existing buildings during construction process of basement [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 224–229. (in Chinese)

    Google Scholar 

  2. SHAN H F, YU F, XIA T D, LIN C G, PAN J L. Performance of the underpinning piles for basement-supplementing retrofit of a constructed building [J]. Journal of Performance of Constructed Facilities, 2017, 31: 04017017. DOI: https://doi.org/10.1061/(ASCE)CF.1943-5509.0001008.

    Article  Google Scholar 

  3. YANG Xue-lin, ZHU Wen-wei, ZHOU Ping-huai. Design key technique of additional basement constructed by top-down excavation below the existing high-rise building [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3775–3786. DOI: https://doi.org/10.13722/j.cnki.jrme.2016.1446. (in Chinese)

    Google Scholar 

  4. ZHENG G, PENG SY, NG C W W, DIAO Y. Excavation effects on pile behaviour and capacity [J]. Canadian Geotechnical Journal, 2012, 49(12): 1347–1356. DOI: https://doi.org/10.1139/t2012-095.

    Article  Google Scholar 

  5. WU Cheng-jie, GONG Xiao-nan, FANG Kai, YU Feng, ZHANG Qian-qing. Effect of excavation beneath existing buildings on loading stiffness of piles [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 8: 1526–1535. DOI: https://doi.org/10.13722/j.cnki.jrme.2014.08.003. (in Chinese)

    Google Scholar 

  6. ZHANG Q Q, LIU S W, FENG R F, LI X M. Analytical method for prediction of progressive deformation mechanism of existing piles due to excavation beneath a pile-supported building [J]. International Journal of Civil Engineering, 2018, 17(10): 751–763. DOI: https://doi.org/10.1007/s40999-018-0309-9.

    Google Scholar 

  7. MA B, ZHANG J Y, LIANG F Y. Centrifugal model tests on the bearing capacity of piles with basement construction under the existing building [C]// Proceedings of GeoShanghai 2018 International Conference: Advances in Soil Dynamics and Foundation Engineering. 2018: 621–628. DOI: https://doi.org/10.1007/978-981-13-0131-567.

  8. NOVAK M. Dynamic stiffness and damping of piles [J]. Canadian Geotechnical Journal, 1974, 11(4): 574–598. DOI: https://doi.org/10.1139/t74-059.

    Article  Google Scholar 

  9. DOBRY R, GAZETAS G. Simple method for dynamic stiffness and damping of floating pile groups [J]. Géotechnique, 1988, 38(4): 557–574. DOI: https://doi.org/10.1680/geot.1988.38.4.557.

    Article  Google Scholar 

  10. KAYNIA A M, KAUSEL E. Dynamics of piles and pile groups in layered soil media [J]. Soil Dynamics & Earthquake Engineering, 1991, 10(8): 386–401. DOI: https://doi.org/10.1016/0267-7261(91)90053-3.

    Article  Google Scholar 

  11. MYLONAKIS G., GAZETAS G. Vertical vibration and additional distress of grouped piles in layered soil [J]. Soils and Foundations, 1998, 38(1): 1–14. DOI: https://doi.org/10.3208/sandf.38.1.

    Article  Google Scholar 

  12. MYLONAKIS G, GAZETAS G. Lateral vibration and internal forces of grouped piles in layered soil [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(1): 16–25. DOI: https://doi.org/10.1061/(ASCE)1090-0241(1999)125:1(16).

    Article  Google Scholar 

  13. ZHAO M H, HENG S, ZHENG Y. Numerical simulation on behavior of pile foundations under cyclic axial loads [J]. Journal of Central South University, 2017, 24: 2906–2913. DOI: https://doi.org/10.1007/s11771-017-3704-5.

    Article  Google Scholar 

  14. PAK R Y S. Dynamic response of a partially embedded bar under transverse excitations [R]. California: California Institute of Technology, 1985.

    Google Scholar 

  15. LEE B K, JIN S J, LI G F, JIN T K. Free vibrations of tapered piles embedded partially in Winkler type foundations [J]. KSCE Journal of Civil Engineering, 1999, 3(2): 195–203. DOI: https://doi.org/10.1007/bf02829059.

    Article  Google Scholar 

  16. CATAL H H. Free vibration of partially supported piles with the effects of bending moment, axial and shear force [J]. Engineering Structures, 2002, 24(12): 1615–1622. DOI: https://doi.org/10.1016/s0141-0296(02)00113-x.

    Article  Google Scholar 

  17. REN Qing, HUANG Mao-song, ZHONG Rui, LIN Yi-feng. Vertical vibration of partially embedded pile groups [J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1384–1390. (in Chinese)

    Google Scholar 

  18. REN Qing, HUANG Mao-song, HAN Dong-xiao. Lateral vibration propertoes of partially embedded pile groups foundation considering axial forces [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(9): 1932–1944. (in Chinese)

    Google Scholar 

  19. LIU Y Y, WANG X H, ZHANG M. Lateral vibration of pile groups partially embedded in layered saturated soils [J]. International Journal of Geomechanics, 2015, 15(4): 04014063. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000406.

    Article  Google Scholar 

  20. LIN C, BENNETT C, HAN J, ROBERT L P. Scour effects on the response of laterally loaded piles considering stress history of sand [J]. Computers and Geotechnics, 2010, 37(7, 8): 1008–1014. DOI: https://doi.org/10.1016/j.compgeo.2010.08.009.

    Article  Google Scholar 

  21. LIN C, HAN J, BENNETT C, PARSONS R L. Behavior of laterally loaded piles under scour conditions considering the stress history of undrained soft clay [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140: 06014005. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001112.

    Article  Google Scholar 

  22. LIANG F Y, ZHANG H, HUANG M S. Extreme scour effects on the buckling of bridge piles considering the stress history of soft clay [J]. Natural Hazards, 2015, 77(2): 1143–1159. DOI: https://doi.org/10.1007/s11069-015-1647-4.

    Article  Google Scholar 

  23. LIANG F Y, WANG C, XIONG Y. Widths, types, and configurations: Influences on scour behaviors of bridge foundations in non-cohesive soils [J]. Marine Georesources & Geotechnology, 2018, 37(5): 578–588. DOI: https://doi.org/10.1080/1064119X.2018.1460644.

    Article  Google Scholar 

  24. GAZETAS G, MAKRIS N. Dynamic pile-soil-pile interaction. Part I: Analysis of axial vibration [J]. Earthquake Engineering & Structural Dynamics, 1991, 20: 115–132. DOI: https://doi.org/10.1002/eqe.4290200203.

    Article  Google Scholar 

  25. MAKRIS N, GAZETAS G. Dynamic pile-soil-pile interaction. Part II: Lateral and seismic response [J]. Earthquake Engineering & Structural Dynamics, 1992, 21(2): 145–162. DOI: https://doi.org/10.1002/eqe.4290210204.

    Article  Google Scholar 

  26. HARDIN B, BLACK W L. Sand stiffness under various triaxial stresses [J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1966, 92(2): 27–42.

    Google Scholar 

  27. HARDIN B, BLACK W L. Vibration modulus of normally consolidated clay [J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1968, 94(2): 353–369.

    Google Scholar 

  28. MAYNE P W, KULHAWY F H. K_0-OCR relationships in soils [J]. Journal of the Geotechnical Engineering Division, ASCE, 1982, 108(6): 851–872. DOI: https://doi.org/10.1016/0148-9062(83)91623-6.

    Google Scholar 

  29. KULHAWY F H, MAYNE P W. Manual on estimating soil properties for foundation design [R]. Palo Alto, CA: Electric Power Research Institute, 1990.

    Google Scholar 

  30. AZZOUZ A S, KRIZEK R J, COROTIS R B. Regression analysis of soil compressibility [J]. Soils and Foundations, 1976, 16(2): 19–29. DOI: https://doi.org/10.3208/sandf1972.16.2_19.

    Article  Google Scholar 

  31. TU W B, HUANG M S, ZHONG R. Scour effects on the dynamic lateral response of composite caisson-piles foundations considering stress history of sand [J]. Japanese Geotechnical Society Special Publication, 2015, 1(6): 23–28. DOI: https://doi.org/10.3208/jgssp.CPN-15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fa-yun Liang  (梁发云).

Additional information

Foundation item: Projects(51878487, 41672266) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Fy., Cao, P. & Qin, Hy. Influence of excavation beneath existing building on dynamic impedances of underpinning pile considering stress history. J. Cent. South Univ. 27, 1870–1879 (2020). https://doi.org/10.1007/s11771-020-4414-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4414-y

Key words

关键词

Navigation