Skip to main content
Log in

Potential landfill site selection for solid waste disposal using GIS and multi-criteria decision analysis (MCDA)

基于GIS 和多准则决策分析的垃圾填埋场选址研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Proper solid waste disposal is an important socioeconomic concern for all developing countries. Municipalities have their own policies, individual approaches and methods to manage the solid wastes. They consider wastelands outside the urban area as the best suitable for the solid waste disposal. Such improper site selection will create morphological changes that lead to environmental hazards in the urban and its surrounding areas. In this research, the site selection for urban solid waste disposal in the Coimbatore district used geographical information system (GIS) and multi-criteria decision analysis (MCDA). Thematic layers of lineament density, landuse/landcover, population density, groundwater depth, drainage density, slope, soil texture, geology and geomorphology were considered as primary criteria and weights for criteria, and sub-criteria were assigned by MCDA analysis. The resultant weight score was validated by consistency ratio so that the efficiency of the selected criteria was justified. The overlay analysis in GIS environment provides 17 potential zones in Coimbatore district, among which, four suitable sites were screened and refined with the help of field investigation and visual interpretation of satellite image. The result of landfill suitability map shows the effectiveness of the proposed method.

摘要

妥善处置固体废物是所有发展中国家的一个重要的社会经济问题。通常市政有自己的策略和方 法来管理固体废物,他们认为城市以外的荒地是最适合固体废物处置的地方,而不当的场地选择会造 成形态变化,危害城市及其周围地区的环境。本文采用地理信息系统(GIS)和多准则决策分析(MCDA) 技术对Coimbatore 地区城市固体废物进行选址。主要标准和权重包括线性密度、土地利用/土地覆盖、 人口密度、地下水埋深、河网密度、坡度、土壤质地、地质地貌,再采用MCDA 分析方法对各子标 准进行划分。通过一致性比验证所选标准的权重,从而证明所选标准的有效性。通过GIS 环境下的叠 加分析,选出Coimbatore 地区的17 个可能的区域,再通过野外调查和卫星图像的可视化筛选和细化 出4 个适宜的地点。填埋场适宜性地图验证了该方法的有效性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rahman M M, Sultana K R, Hoque M A. Suitable sites for urban solid waste disposal using GIS approach in Khulna city, Bangladesh [J]. Proceedings of the Pakistan Academy of Sciences (Pakistan), 2008, 45: 11–12.

    Google Scholar 

  2. Hannan M A, Abdulla Al Mamun M, Hussain A, Basri H, Begum R A. A review on technologies and their usage in solid waste monitoring and management systems: Issues and challenges [J]. Waste Management, 2015, 43: 509–523.

    Article  Google Scholar 

  3. Ojha C S P, Goyal M K, Kumar S. Applying fuzzy logic and the point count system to select landfill sites [J]. Environmental Monitoring and Assessment, 2007, 135(1–3): 99–106.

    Article  Google Scholar 

  4. Baban S M J, Flannagan J. Developing and implementing GIS-assisted constraints criteria for planning landfill sites in the UK [J]. Planning Practice and Research, 1998, 13(2):139–151.

    Article  Google Scholar 

  5. Kontos T D, Komilis D P, Halvadakis C P. Siting MSW landfills with a spatial multiple criteria analysis methodology [J]. Waste Management, 2005, 25(8): 818–832.

    Article  Google Scholar 

  6. Delgado O B, Mendoza M, Granados E L, Geneletti D. Analysis of land suitability for the siting of inter-municipal landfills in the Cuitzeo Lake Basin, Mexico [J]. Waste Management, 2008, 28(7): 1137–1146.

    Article  Google Scholar 

  7. Chang N B, Parvathinathan G, Breeden J B. Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region [J]. Journal of Environmental Management, 2008, 87(1): 139–153.

    Article  Google Scholar 

  8. Sharifi M, Hadidi M, Vessali E, Mosstafakhani P, Taheri K, Shahoie S, Khodamoradpour M. Integrating multi-criteria decision analysis for a GIS-based hazardous waste landfill sitting in Kurdistan Province, western Iran [J]. Waste Management, 2009, 29(10): 2740–2758.

    Article  Google Scholar 

  9. Higgs G, Langford M. GIScience, environmental justice, & estimating populations at risk: The case of landfills in Wales [J]. Applied Geography, 2009, 29(1): 63–76.

    Article  Google Scholar 

  10. Geneletti D. Combining stakeholder analysis and spatial multicriteria evaluation to select and rank inert landfill sites [J]. Waste Management, 2010, 30(2): 328–337.

    Article  Google Scholar 

  11. Sivakumar B G L, Asce M, Reddy K R, Asce F, Srivastava A. Influence of spatially variable geotechnical properties of msw on stability of landfill slopes [J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2014, 18(1): 27–37.

    Article  Google Scholar 

  12. Sivakumar B G L, Lakshmikanthan P. Estimation of the components of municipal solid waste settlement [J]. Waste Management and Research, 2015, 33(1): 30–38.

    Article  Google Scholar 

  13. Jensen J, Christensen E. Solid and hazardous waste disposal site selection using digital geographic information system techniques [J]. Science of the Total Environment, 1986, 56: 265–276.

    Article  Google Scholar 

  14. Siddiqui M, Everett J, Vieux B. Landfill siting using geographic information systems: A demonstration [J]. Journal of Environmental Engineering, 1996, 122(6): 515–523.

    Article  Google Scholar 

  15. Fatta D, Saravanos P, Loizidou M. Industrial waste facility site selection using geographical information system techniques [J]. International Journal of Environmental Studies, 1998, 56(1): 1–14.

    Article  Google Scholar 

  16. Kontos T D, Komilis D P, Halvadakis C P. Siting MSW landfills on Lesvos island with a GIS-based methodology [J]. Waste Management and Research, 2003, 21(3): 262–277.

    Article  Google Scholar 

  17. Sener B, Suzen M L, Doyuran V. Landfill site selection by using geographic information systems [J]. Environmental Geology, 2006, 49(3): 376–388.

    Article  Google Scholar 

  18. Saaty T L. The analytic hierarchy process, planning, piority setting, resource allocation [M]. New York: McGraw-Hill, 1980.

    MATH  Google Scholar 

  19. Roy R. The analytic hierarchy process. strategic decision making: Applying the analytic hierarchy process [M]. London: Springer London, 2004.

    Google Scholar 

  20. Saaty T L. Decision making with the analytic hierarchy process [J]. International Journal of Services Sciences, 2008, 1(1): 83–98.

    Article  Google Scholar 

  21. Lukasheh A F, Droste R L, Warith M A. Review of expert system (ES), geographic information system (GIS), decision support system (DSS), and their applications in landfill design and management [J]. Waste Management and Research, 2001, 19(2): 177–185.

    Article  Google Scholar 

  22. Al-Jarrah O, Abu-Qdais H. Municipal solid waste landfill sitting using intelligent system [J]. Waste Management, 2006, 26(3): 299–306.

    Article  Google Scholar 

  23. Sumathi V R, Natesan U, Sarkar C. GIS-based approach for optimized siting of municipal solid waste landfill [J]. Waste Management, 2008, 28(11): 2146–2160.

    Article  Google Scholar 

  24. Chander G, Markham B L, Helder D L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors [J]. Remote Sensing of Environment, 2009, 113(5): 893–903.

    Article  Google Scholar 

  25. Joevivek V, Hemalatha T, Soman K P. Determining an efficient supervised classification method for hyperspectral image [C]// 2009 International Conference on Advances in Recent Technologies in Communication and Computing. IEEE, 2009: 384–386.

    Chapter  Google Scholar 

  26. Alavi N, Goudarzi G, Babaei A A, Jaafarzadeh N, Hosseinzadeh M. Municipal solid waste landfill site selection with geographic information systems and analytical hierarchy process: A case study in Mahshahr County, Iran [J]. Waste Management and Research, 2013, 31(1): 98–105.

    Article  Google Scholar 

  27. Elahi A, Samadyar H. Municipal solid waste landfill site selection using analytic hierarchy process method for tafresh town [J]. Middle-East Journal of Scientific Research, 2014, 22(9): 1294–1307.

    Google Scholar 

  28. Frantzis I. Methodology for municipal landfill sites selection [J]. Waste Management Research, 1993, 11(5): 441–451.

    Article  Google Scholar 

  29. Montserrat Z, Emilio M, Alvaro H, Alejandro G, Angel R. Evaluation of a municipal landfill site in southern spain with GIS-aided methodology [J]. Journal of Hazardous Materials, 2008, 160(2, 3): 473–481.

    Google Scholar 

  30. Wang Gui-qin, Qin Li, Li Guo-xue, Chen Li-jun. Landfill site selection using spatial information technologies and AHP: A case study in Beijing, China [J]. Journal of Environmental Management, 2009, 90(8): 2414–2421.

    Article  Google Scholar 

  31. Javaheri H, Nasrabadi T, Jafarian M H, Rowshan G R, Khoshnam H. Site selection of municipal solid waste landfills using analytical hierarchy process method in a geographical information technology environment in giroft [J]. Iran Journal of Health Science and Engineering, 2006, 3(3): 177–184.

    Google Scholar 

  32. Kumar S, Hassan M I. Selection of a landfill site for solid waste management: An application of AHP and spatial analyst tool [J]. Journal of Indian Society of Remote Sensing, 2013, 41(1): 45–56.

    Article  Google Scholar 

  33. Babalola A, Busu I. Selection of landfill sites for solid waste treatment in damaturu town-using GIS Techniques [J]. Journal of Environmental Protection, 2011, 2(1): 1–10.

    Article  Google Scholar 

  34. Ahmed B. Landslide susceptibility mapping using multicriteria evaluation techniques in Chittagong Metropolitan Area, Bangladesh [J]. Landslides, 2015, 12(6): 1077–1095.

    Article  Google Scholar 

  35. Sener S, Sener E, Karaguzel R. Solid waste disposal site selection with GIS and AHP methodology: A case study in Senirkent–Uluborlu (Isparta) Basin, Turkey [J]. Environmental Monitoring and Assessment, 2011, 173(1–4): 533–554.

    Article  Google Scholar 

  36. AWMFH. Chapter 5—Role of soils in waste management. Part 651-Agricultural waste management field handbook [EB/OL]. [2009]. http://directives.sc.egov.usda.gov/6620.wba.

  37. Ravindran K V, Jeyaram A. Groundwater prospects of shahbad tehsil, baran district, eastern rajasthan: A remote sensing approach [J]. Journal of the Indian Society of Remote Sensing, 1997, 25(4): 239–246.

    Article  Google Scholar 

  38. Saxena R K, Verma K S, Chary G R, Srivastava R, Barthwal A K. IRS-1C data application in watershed characterization and management [J]. International Journal of Remote Sensing, 2000, 21(17): 3197–3208.

    Article  Google Scholar 

  39. Kaliraj S, Chandrasekar N, Magesh N S. Evaluation of multiple environmental factors for site-specific groundwater recharge structures in the Vaigai River upper basin, Tamil Nadu, India, using GIS-based weighted overlay analysis [J]. Environmental Earth Sciences, 2015, 74(5): 4355–4380.

    Article  Google Scholar 

  40. Reddy Gpobi, Mouli K C, Srivastav S K, Srinivas C V, Maji A K. Evaluation of ground water potential zones using remote sensing data—A case study of gaimukh watershed, bhandara district, maharashtra [J]. Journal of the Indian Society of Remote Sensing, 2000, 28(1): 19–32.

    Article  Google Scholar 

  41. THE HINDU. Relocate Vellalore dump yard: AAP, Coimbatore edition [EB/OL]. [2016–08–10]. http://www. thehindu.com/news/cities/Coimbatore/relocate-vellalore-dum p-yard-aap/article4944417.ece, 2013-07-23/.

  42. Joevivek V, Chandrasekar N, Jayangondaperumal R. Evaluation of optimal wavelet filters for seismic wave analysis [J]. Himalayan Geology, 2016, 37(2): 176–189.

    Google Scholar 

  43. Joevivek V, Chandrasekar N, Srinivas Y. Improving seismic monitoring system for small to intermediate earthquake detection [J]. International Journal of Computer Science and Security (IJCSS), 2010, 4(3): 308–315.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kapilan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapilan, S., Elangovan, K. Potential landfill site selection for solid waste disposal using GIS and multi-criteria decision analysis (MCDA). J. Cent. South Univ. 25, 570–585 (2018). https://doi.org/10.1007/s11771-018-3762-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3762-3

Keywords

关键词

Navigation