Skip to main content
Log in

Near-source noise suppression of AMT by compressive sensing and mathematical morphology filtering

  • Published:
Applied Geophysics Aims and scope Submit manuscript

Abstract

In deep mineral exploration, the acquisition of audio magnetotelluric (AMT) data is severely affected by ambient noise near the observation sites; This near-field noise restricts investigation depths. Mathematical morphological filtering (MMF) proved effective in suppressing large-scale strong and variably shaped noise, typically low-frequency noise, but can not deal with pulse noise of AMT data. We combine compressive sensing and MMF. First, we use MMF to suppress the large-scale strong ambient noise; second, we use the improved orthogonal match pursuit (IOMP) algorithm to remove the residual pulse noise. To remove the noise and protect the useful AMT signal, a redundant dictionary that matches with spikes and is insensitive to the useful signal is designed. Synthetic and field data from the Luzong field suggest that the proposed method suppresses the near-source noise and preserves the signal well; thus, better results are obtained that improve the output of either MMF or IOMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bollig, A., Disch, C., Arts, M., et al., 2017, SNR walls in eigenvalue-based spectrum sensing: Eurasip Journal on Wireless Communications & Networking, 2017(1), 109.

    Google Scholar 

  • Cai, J. H., Tang, J. T., Hua, X. R., et al., 2009, An analysis method for magnetotelluric data based on the Hilbert–Huang Transform: Exploration Geophysics, 40(2), 197–205.

    Google Scholar 

  • Candès, E. J., Romberg, J., and Tao, T., 2006, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information: IEEE Transactions on Information Theory, 52(2), 489–509.

    Google Scholar 

  • Candès, E. J., and Tao, T., 2006, Near-optimal signal recovery from random projections: Universal encoding strategies: IEEE transactions on information theory, 52(12), 5406–5425.

    Google Scholar 

  • Candès, E. J., and Wakin, M. B., 2008, An introduction to compressive sampling: Signal Processing Magazine, IEEE, 25(2), 21–30.

    Google Scholar 

  • Dai, W., and Milenkovic, O., 2009, Subspace pursuit for compressive sensing signal reconstruction: IEEE Transactions on Information Theory, 55(5), 2230–42249.

    Google Scholar 

  • Davenport, M. A., and Wakin, M. B., 2010, Analysis of orthogonal matching pursuit using the restricted isometry property: IEEE Transactions on Information Theory, 56(9), 4395–4401.

    Google Scholar 

  • Donoho, D. L., 2006, Compressed sensing: IEEE Transactions on information theory, 52(4), 1289–1306.

    Google Scholar 

  • Duarte, M. F., Davenport, M. A., Takhar, D., et al., 2008, Single-pixel imaging via compressive sampling: IEEE Signal Processing Magazine, 25(2), 83–91.

    Google Scholar 

  • Egbert, G. D., 1997, Robust multiple-station magnetotelluric data processing: Geophysical Journal International, 130(2), 475–496.

    Google Scholar 

  • Gamble, T. D., Goubau, W. M., and Clarke, J., 1979, Magnetotellurics with a remote magnetic reference: Geophysics, 44(1), 53–68.

    Google Scholar 

  • Garcia, X., and Jones, A. G., 2008, Robust processing of magnetotelluric data in the AMT dead band using the continuous wavelet transform: Geophysics, 73(6), F223–F234.

    Google Scholar 

  • Guo, H. Y., Yang, Z., and Zhu, W. P., 2012, Anewsinglechannel speech separation method based on sparse decomposition: Acta Electronica Sinica, 40(4), 762–768.

    Google Scholar 

  • Hennenfent, G., and Herrmann, F. J., 2008, Simply denoise: Wavefield reconstruction via jittered undersampling: Geophysics, 73(3), V19–V28.

    Google Scholar 

  • Huang, H., and Makur, A., 2011, Backtracking-based matching pursuit method for sparse signal reconstruction: IEEE Signal Processing Letters, 18(7), 391–394.

    Google Scholar 

  • Jin, J., Gu, Y. T., and Mei, S. L., 2010, An Introduction to Compressive Sampling and Its Applications: Journal of Electronics & Information Technology, 32(2), 470–475.

    Google Scholar 

  • Li, F. L., Chang, J., Zhang, X. Y., et al., 2015, Reconstruction algorithm of blind sparse and its de-noising application in speech based on compressed sensing: Journal of Central South University, 46(1), 164–170.

    Google Scholar 

  • Li, G., Tang, J. T., Wen, S. S., et al., 2017, Suppression of strong noise in MT data based on reconstruction algorithm of compressive sensing: International Geophysical Conference, 17-20 April, Qingdao, China, 497–499.

    Google Scholar 

  • Li, J., Tang, J. T., Wang, L., et al., 2014, Noise suppression for magnetotelluric sounding data based on signal subspace enhancement and endpoint detection: Acta Physica Sinica, 63(1), 247–254.

    Google Scholar 

  • Li, Q., Han, L. G., Chen, J. Y., et al., 2015, Separation of inhomogeneous blended seismic data: Applied Geophysics, 12(3), 327–333.

    Google Scholar 

  • Li, S. T., and Wei, D., 2009, A Survey on Compressive Sensing: Acta Automatica Sinica, 35(11), 1369–1377.

    Google Scholar 

  • Liu, Y. X., Zhao, R. Z., Hu, S. H., et al., 2010, Regularized Adaptive Matching Pursuit Algorithm for Signal Reconstruction Basedon Compressive Sensing: Journal of Electronics & Information Technology, 32(11), 2713–2717.

    Google Scholar 

  • Matheron, G., and Serra, J., 2000, The Birth of Mathematical Morphology: Proceedings of the 5th International Symposium on Mathematical Morphology and its Applications to Image and Signal Processing, ISMM 2000, Palo Alto, CA, USA, June 26-28.

    Google Scholar 

  • Mallat, S. G., and Zhang, Z., 1993, Matching pursuits with time-frequency dictionaries: IEEE Transactions on signal Processing, 41(12), 3397–3415.

    Google Scholar 

  • Needell, D., and Tropp, J. A., 2009, CoSaMP: Iterative signal recovery from incomplete and inaccurate samples: Applied and Computational Harmonic Analysis, 26(3), 301–321.

    Article  Google Scholar 

  • Pati, Y. C., Rezaiifar, R., and Krishnaprasad, P. S., 1993, Orthogonal matching pursuits: Recursive function approximation with applications to wavelet decomposition: Proceedings of the 27th Asilomar Conference in Signals, Systems, and Computers.

    Google Scholar 

  • Ren, Z., Kalscheuer, T., Greenhalgh, S., et al., 2013, A goaloriented adaptive finite-element approach for plane wave 3-D electromagnetic modelling: Geophysical Journal International, 194(2), 700–718.

    Google Scholar 

  • Shireesha, M., and Harinarayana, T., 2011, Processing of magnetotelluric data-a comparative study with 4 and 6 element impedance tensor elements: Applied Geophysics, 8(4), 285–292.

    Google Scholar 

  • Shi, G. M., Liu, D. H., Gao, D. H., et al., 2009, Advances in theory and application of compressed sensing: Acta Electronica Sinica, 37(5), 10701–1081.

    Google Scholar 

  • Smirnov, M. Y., 2003, Magnetotelluric data processing with a robust statistical procedure having a high breakdown point: Geophysical Journal International, 152(1), 1–7.

    Google Scholar 

  • Tang, G., Ma, J. W., and Yang, H. Z., 2012a, Seismic data denoising based on learning-type overcomplete dictionaries: Applied Geophysics, 9(1), 27–32.

    Google Scholar 

  • Tang, J. T., Hua, X. R., Cao, Z. M., et al., 2008, Hilbert-Huang transformation and noise suppression of magnetotelluric sounding data: Chinese J. Geophys (in Chinese), 51(2), 603–610.

    Google Scholar 

  • Tang, J. T., Li, H., Li, J., et al., 2014, Top-Hat transformation and magnetotelluric sounding data strong interference separation of Lijiang-Zongyang ore concentration area: Journal of Jilin University (Earth Science Edition) (in Chinese), 44(1), 336–343.

    Google Scholar 

  • Tang, J. T., Li, J., Xiao, X., et al., 2012b, Mathematical morphology filtering an noise suppression of magnetotelluric sounding data: Chinese J. Geophys (in Chinese), 55(05), 1784–1793.

    Google Scholar 

  • Tang, J. T., Liu, Z. J., Liu, F. Y., et al., 2015, The denoising of the audio magnetotelluric data set with strong interferences: Chinese J. Geophys (in Chinese), 58(12), 4636–4647.

    Google Scholar 

  • Tang, J. T., Xu, Z. M., Xiao, X., et al., 2012c, Effect rules of strong noise on magnetotelluric (MT) sounding in the Luzong ore cluster area: Chinese J. Geophys (in Chinese), 55(12), 4147–4159.

    Google Scholar 

  • Tang, J. T., Zhou, C., Wang, X. Y., et al., 2013, Deep electrical structure and geological significance of Tongling ore district: Tectonophysics, 606, 78–96.

    Google Scholar 

  • Trad, D. O., and Travassos, J. M., 2000, Wavelet filtering of magnetotelluric data: Geophysics, 65(2), 482–491.

    Google Scholar 

  • Tropp, J. A., and Gilbert, A. C., 2007, Signal recovery from random measurements via orthogonal matching pursuit: IEEE Transactions on Information Theory, 53(12), 4655–4666.

    Google Scholar 

  • Wang, X., Zhu, H., Rui, T., et al., 2015, Shift invariant sparse coding ensemble and its application in rolling bearing fault diagnosis: Journal of Vibroengineering, 17(4), 1837–1848.

    Google Scholar 

  • Xiao, X., Tang, J. T., Zhou, C., et al., 2011, Magnetotelluric sounding in the Lujiang-Zongyang ore district and preliminary study of electrical structure: Acta Geological Sinica (in Chinese), 85(5), 873–886.

    Google Scholar 

  • Zhang, H., Chen, X. H., and Zhang, L. Y., 2017, 3D simultaneous seismic data reconstruction and noise suppression based on the curvelet transform: Applied Geophysics, 14(1), 87–95.

    Google Scholar 

  • Zhu, H. J., Wang, X. Q., Rui, T., et al., 2015, Implication of improved matching pursuit in de-noising for square wave: Journal of PLA University of Science and Technology (Natural Science Edition) (in Chinese), 16(4), 305–309.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Xiao.

Additional information

This work is financially supported by the National High Technology Research and Development Program of China (No. 2014AA06A602), National Natural Science Foundation of China (No. 41404111), and Natural Science Foundation of Hunan Province (No. 2015JJ3088).

Li Guang received his bachelor’s and master’s degree from Hunan University of Science and Technology in 2011 and 2014, respectively. Presently, he is pursuing Ph.D. from Central South University. His main research interests are signal processing of electromagnetic methods and intelligent instruments. Email: li_guangg@163.com.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Xiao, X., Tang, JT. et al. Near-source noise suppression of AMT by compressive sensing and mathematical morphology filtering. Appl. Geophys. 14, 581–589 (2017). https://doi.org/10.1007/s11770-017-0645-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11770-017-0645-6

Keywords

Navigation