Skip to main content
Log in

Strigolactones: multi-level regulation of biosynthesis and diverse responses in plant abiotic stresses

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Strigolactones (SLs) are a small class of diverse metabolites derived from the carotenoid pathway. These active biomolecules are a recent inclusion to the list of non-traditional phytohormones or plant growth regulators. Previous reports and articles have discussed their pro-regulatory roles in plant growth, development, signaling and delay of senescence. However, the multi-level control of SL biosynthesis is less known. The anabolic genes are strictly regulated through synchronized co-operation between crucial phytohormones. Epigenetic and microRNA-mediated post-transcriptional regulation fine tunes the cellular accumulation of these putative phytohormones. The question now arises that why such multi-level intricate regulation at all is required for SLs, which were originally detected as under-rated germination and rhizosphere stimulants. This review answers the question in the backdrop of the positive roles of SLs in promoting abiotic stress resilience across diverse plant species. SLs reportedly accumulate in the plant tissues in response to environmental sub-optimal conditions like drought, salinity, temperature, nutrient deprivation and oxidative stresses. Fluctuations in the light quality and intensity also trigger variable accumulation of SLs, indicating their potential in regulating light stress as well. Though the exact roles of SLs have not yet been characterized, it is predicted that they possibly induce the expression of downstream osmolytes to maintain metabolic homeostasis in the stressed cells. Thus, exogenous treatments or transgenic approaches for higher SL bioaccumulation can be potential strategies for developing multiple abiotic stress tolerance in crops and plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P et al (2012) The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335:1348–1351

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Ruiz-Lozano JM, Zamarreno AM, Paz JA, Garcia-Mina JM et al (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47–55

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Roychoudhury A (2016) Plant responses to light stress: oxidative damages, photoprotection and role of phytohormones. In: Ahammed GJ, Yu J-Q (eds) Plant hormones under challenging environmental factors. Springer, Dordrecht, pp 181–213

    Google Scholar 

  • Banerjee A, Roychoudhury A (2017) Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma 254:3–16

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Roychoudhury A (2018a) The gymnastics of epigenomics in rice. Plant Cell Rep 37:25–49

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Roychoudhury A (2018b) Abiotic stress, generation of reactive oxygen species, and their consequences: an overview. In: Singh VP, Singh S, Tripathi D, Mohan Prasad S, Chauhan DK (eds) Revisiting the role of reactive oxygen species (ROS) in plants: ROS Boon or bane for plants?. Wiley, pp 23–50

  • Banerjee A, Roychoudhury A, Krishnamoorthi S (2016) Emerging techniques to decipher microRNAs (miRNAs) and their regulatory role in conferring abiotic stress tolerance in plants. Plant Biotechnol Rep 10:185–205

    Article  Google Scholar 

  • Banerjee A, Wani SH, Roychoudhury A (2017) Epigenetic control of plant cold responses. Front Plant Sci 8:1643

    Article  PubMed  PubMed Central  Google Scholar 

  • Beveridge CA, Kyozuka J (2010) New genes in the strigolactone-related shoot branching pathway. Curr Opin Plant Biol 13:34–39

    Article  CAS  PubMed  Google Scholar 

  • Bonneau L, Huguet S, Wipf D, Pauly N, Truong HN (2013) Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favourable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytol 199:188–202

    Article  CAS  PubMed  Google Scholar 

  • Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P et al (2005) MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell 8:443–449

    Article  CAS  PubMed  Google Scholar 

  • Boyer FD, de Saint Germain A, Pillot JP, Pouvreau JB, Chen VX, Ramos S et al (2012) Structure-activity relationship studies of strigolactone-related molecules for branching inhibition in garden pea: molecule design for shoot branching. Plant Physiol 159:1524–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun N, de Saint Germain A, Pillot JP, Boutet-Mercey S, Dalmais M, Antoniadi I et al (2012) The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiol 158:225–238

    Article  CAS  PubMed  Google Scholar 

  • Brewer PB, Dun EA, Ferguson BJ, Rameau C, Beveridge CA (2009) Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol 150:482–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bu Q, Lv T, Shen H, Luong P, Wang J, Wang Z et al (2014) Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis. Plant Physiol 164:424–439

    Article  CAS  PubMed  Google Scholar 

  • Cardoso C, Zhang Y, Jamil M, Hepworth J, Charnikhova T, Dimkpa SO et al (2014) Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1orthologs. Proc Natl Acad Sci USA 111:2379–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Gao X, Zhang J (2015) Alteration of osa-miR156e expression affects rice plant architecture and strigolactones (SLs) pathway. Plant Cell Rep 34:767–871

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Ruyter-Spira C, Bouwmeester H (2013) The interaction between strigolactones and other plant hormones in the regulation of plant development. Front Plant Sci 4:199

    Article  PubMed  PubMed Central  Google Scholar 

  • Cook CE, Whichard LP, Wall ME, Egley GH, Coggon P et al (1972) Germination stimulants. II. Structure of strigol, a potent seed germination stimulant for witch weed (Striga lutea). J Am Chem Soc 94:6198–6199

    Article  CAS  Google Scholar 

  • Dun EA, de Saint Germain A, Rameau C, Beveridge CA (2012) Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol 158:487–498

    Article  CAS  PubMed  Google Scholar 

  • Finlayson SA, Krishnareddy SR, Kebrom TH, Casal JJ (2010) Phytochrome regulation of branching in Arabidopsis. Plant Physiol 152:1914–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foo E, Yoneyama K, Hugill CJ, Quittenden LJ, Reid JB (2013) Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Mol Plant 6:76–87

    Article  CAS  PubMed  Google Scholar 

  • Foo E, Ferguson BJ, Reid JB (2014) The potential roles of strigolactones and brassinosteroids in the autoregulation of nodulation pathway. Ann Bot 113:1037–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Ha CV, Leyva-Gonzalez MA, Osakabe Y, Tran UT, Nishiyama R et al (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci USA 111:851–856

    Article  PubMed  Google Scholar 

  • Hayward A, Stirnberg P, Beveridge C, Leyser O (2009) Interactions between auxin and strigolactone in shoot branching control. Plant Physiol 151:400–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam S, Griffiths CA, Blomstedt CK, Le T-N, Gaff DF et al (2013) Increased biomass, seed yield and stress tolerance is conferred in Arabidopsis by a novel enzyme from the resurrection grass Sporobolus stapfianus that glycosylates the strigolactone analogue GR24. PLoS One 8:e80035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koltai H (2011) Strigolactones are regulators of root development. New Phytol 190:545–549

    Article  CAS  PubMed  Google Scholar 

  • Koltai H, Cohen M, Chesin O, Mayzlish-Gati E, Bécard G, Puech V et al (2011) Light is a positive regulator of strigolactone levels in tomato roots. J Plant Physiol 168:1993–1996

    Article  CAS  PubMed  Google Scholar 

  • Lechat MM, Pouvreau JB, Péron T, Gauthier M, Montiel G et al (2012) PrCYP707A1, an ABA catabolic gene, is a key component of Phelipanche ramosa seed germination in response to the strigolactone analogue GR24. J Exp Bot 63:5311–5322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lechat MM, Brun G, Montiel G, Véronési C, Simier P, Thoiron S et al (2015) Seed response to strigolactone is controlled by abscisic acid-independent DNA methylation in obligate root parasitic plant, Phelipanche ramosa L. Pomel. J Exp Bot 66:3129–3140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leyser O (2009) The control of shoot branching: an example of plant information processing. Plant Cell Environ 32:694–703

    Article  CAS  PubMed  Google Scholar 

  • Li W, Nguyen KH, Watanabe Y, Yamaguchi S, Tran LS (2016) OaMAX2 of Orobanche aegyptiaca and Arabidopsis AtMAX2 share conserved functions in both development and drought responses. Biochem Biophys Res Commun 478:521–526

    Article  CAS  PubMed  Google Scholar 

  • Lin R, Ding L, Casola C, Ripoll DR, Feschotte C, Wang H (2007) Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318:1302–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lepez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Kohlen W, Lillo A, den Camp RO, Ivanov S et al (2011) Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 23:3853–3865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Novero M, Charnikhova T, Ferrandino A, Schubert A et al (2013) CAROTENOID CLEAVAGE DIOXYGENASE 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model Lotus japonicus. J Exp Bot 64:1967–1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, He H, Vitali M, Visentin I, Charnikhova T et al (2015) Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress. Planta 241:1435–1451

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Raez JA (2016) How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis? Planta 243:1375–1385

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Raez JA, Kohlen W, Charnikhova T, Mulder P, Undas AK et al (2010) Does abscisic acid affect strigolactone biosynthesis? New Phytol 187:343–354

    Article  CAS  PubMed  Google Scholar 

  • Luo L, Li W, Miura K, Ashikari M, Kyozuka J (2012) Control of tiller growth of rice by OsSPL14 and strigolactones, which work in two independent pathways. Plant Cell Physiol 53:1793–1801

    Article  CAS  PubMed  Google Scholar 

  • Lv S, Zhang Y, Li C, Liu Z, Yang N et al (2017) Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid-independent manner. New Phytol. https://doi.org/10.1111/nph.14813

    Google Scholar 

  • Makhzoum A, Yousefzadi M, Malik S, Gantet P, Tremouillaux-Guiller J (2017) Strigolactone biology: genes, functional genomics, epigenetics and applications. Crit Rev Biotechnol 37:151–162

    Article  CAS  PubMed  Google Scholar 

  • Marzec M, Muszynska A (2015) In silico analysis of the genes encoding proteins that are involved in the biosynthesis of the RMS/MAX/D pathway revealed new roles of strigolactones in plants. Int J Mol Sci 16:6757–6782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mashiguchi K, Sasaki E, Shimada Y, Nagae M, Ueno K, Nakano M et al (2009) Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis. Biosci Biotechnol Biochem 73:2460–2465

    Article  CAS  PubMed  Google Scholar 

  • Matusova R, Rani K, Verstappen FW, Franssen MC, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayzlish-Gati E, De-Cuyper C, Goormachtig S, Beeckman T, Vuylsteke M, Brewer PB et al (2012) Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiol 160:1329–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra S, Upadhyay S, Shukla RK (2017) The role of strigolactones and their potential cross-talk under hostile ecological conditions in plants. Front Physiol 7:691

    Article  PubMed  PubMed Central  Google Scholar 

  • Ouyang X, Li J, Li G, Li B, Chen B, Shen H et al (2011) Genome-wide binding site analysis of FAR-RED ELONGATED HYPOCOTYL 3 reveals its novel function in Arabidopsis development. Plant Cell 23:2514–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey A, Sharma M, Pandey GK (2016) Emerging roles of strigolactones in plant responses to stress and development. Front Plant Sci 7:434

    PubMed  PubMed Central  Google Scholar 

  • Pelaez-Vico MA, Bernabeu-Roda L, Kohlen W, Soto MJ, Lopez-Raez JA (2016) Strigolactones in the Rhizobium-legume symbiosis: stimulatory effect on bacterial surface motility and down-regulation of their levels in nodulated plants. Plant Sci 245:119–127

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen A, Mason MG, De Cuyper C, Brewer PB, Herold S, Agusti J et al (2012) Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol 158:1976–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roychoudhury A, Banerjee A (2017) Abscisic acid signaling and involvement of mitogen activated protein kinases and calcium-dependent protein kinases during plant abiotic stress. In: Pandey G (ed) Mechanism of plant hormone signaling under stress, vol 1. Wiley, pp 197–241

  • Ruiz-Lozano JM, Porcel R, Azcon C, Aroca R (2012) Regulation of arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 11:4033–4044

    Article  Google Scholar 

  • Ruiz-Lozano JM, Aroca R, Zamarreno AM, Molina S, Andreo-Jimenez B et al (2016) Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39:441–452

    Article  CAS  PubMed  Google Scholar 

  • Saeed W, Naseem S, Ali Z (2017) Strigolactones biosynthesis and their role in abiotic stress resilience in plants: a critical review. Front Plant Sci 8:1487

    Article  PubMed  PubMed Central  Google Scholar 

  • Saia S, Amato G, Frenda AS, Giambalvo D, Ruisi P (2014) Influence of arbuscular mycorrhizae on biomass production and nitrogen fixation of berseem clover plants subjected to water stress. PLoS One 9:e90738

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinohara N, Taylor C, Leyser O (2013) Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biol 1:e1001474

    Article  Google Scholar 

  • Smith SM, Li J (2014) Signalling and responses to strigolactones and karrikins. Curr Opin Plant Biol 21:23–29

    Article  CAS  PubMed  Google Scholar 

  • Stirnberg P, van de Sande K, Leyser HMO (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129:1131–1141

    CAS  PubMed  Google Scholar 

  • Sun H, Tao J, Liu S, Huang S, Chen S, Xie X et al (2014) Strigolactones are involved in phosphate-and nitrate-deficiency-induced root development and auxin transport in rice. J Exp Bot 65:6735–6746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trevisan S, Manoli A, Ravazzolo L, Botton A, Pivato M, Quaggiotti S (2015) Nitrate sensing by the maize root apex transition zone: a merged transcriptomic and proteomic survey. J Exp Bot 66:3699–3715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchiya Y, Vidaurre D, Toh S, Hanada A, Nambara E, Kamiya Y et al (2010) A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat Chem Biol 6:741–749

    Article  CAS  PubMed  Google Scholar 

  • Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S (2010) Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol 51:1118–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel JT, Walter MH, Giavalisco P, Lytovchenko A, Kohlen W, Charnikhova T et al (2010) SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant J 61:300–311

    Article  CAS  PubMed  Google Scholar 

  • Wang YH, Irving HR (2011) Developing a model of plant hormone interactions. Plant Signal Behav 6:494–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters MT, Gutjahr C, Bennett T, Nelson DC (2017) Strigolactone signaling and evolution. Annu Rev Plant Biol 68:291–322

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Ann Rev Phytopathol 48:93–117

    Article  CAS  Google Scholar 

  • Yamada Y, Furusawa S, Nagasaka S, Shimomura K, Yamaguchi S, Umehara M (2014) Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta 240:399–408

    Article  CAS  PubMed  Google Scholar 

  • Yin R, Skvortsova MY, Loubery S, Ulm R (2016) COP1 is required for UV-B-induced nuclear accumulation of the UVR8 photoreceptor. Proc Natl Acad Sci USA 113:E4415–E4422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial assistance from Council of Scientific and Industrial Research (CSIR), Government of India, through the research Grant [38(1387)/14/EMR-II] to Dr. Aryadeep Roychoudhury is gratefully acknowledged. The authors are also thankful to University Grants Commission, Government of India, for providing fellowship to Mr. Aditya Banerjee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aryadeep Roychoudhury.

Additional information

Communicated by J. Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A., Roychoudhury, A. Strigolactones: multi-level regulation of biosynthesis and diverse responses in plant abiotic stresses. Acta Physiol Plant 40, 86 (2018). https://doi.org/10.1007/s11738-018-2660-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2660-5

Keywords

Navigation