Skip to main content
Log in

Regulation of photosynthesis by brassinosteroids in plants

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Brassinosteroids (BRs) regarded as plant hormone are a class of naturally occurring polyhydroxylated sterol derivatives present in all plant species. Overall growth of the plant relies on the very basic and important process of photosynthesis. BRs are found capable of preventing the loss of photosynthetic pigments either by activating or inducing the synthesis of enzymes involved in chlorophyll biosynthesis. BRs play important role in maintaining PS II efficiency by stabilizing D1 protein. It overcomes the stomatal limitations and elevates the efficiency of photosynthetic carbon fixation. BRs also act at various levels of light and dark reactions leading to enhanced carbohydrate synthesis. Therefore, it becomes important to focus and collect information related to various effects of BRs on photosynthesis and its related attributes. The present review deals with the effect of BRs on photosynthesis under normal as well as stressful conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

EBL:

24-Epibrassinolide

HBL:

28-Homobrassinolide

BRs:

Brassinosteroids

CAT:

Catalase

Chl:

Chlorophyll

C i :

Internal CO2 concentration

POX:

Peroxidase

P N :

Photosynthetic rate

PSII:

Photosystem II

ROS:

Reactive oxygen species

G s :

Stomatal conductance

SOD:

Superoxide dismutase

E :

Transpiration rate

WUE:

Water use efficiency

References

  • Adak MK, Gupta DKD (1999) Photosynthesis and net assimilation rate of rice cultivars as influenced by waterlogging. Indian J Plant Physiol 4(4):334–336

    Google Scholar 

  • Alam MM, Hayat S, Ali B et al (2007) Effect of 28-homobrassinolide treatment on nickel toxicity in Brassica juncea. Photosynthetica 45(1):139–142

    Article  CAS  Google Scholar 

  • Ali B, Hayat S, Ahmad A (2005) Response of germinating seeds of Cicer arietinum to 28-homobrassinolide and/or potassium. Gen Appl Plant Physiol 31(1–2):55–63

    CAS  Google Scholar 

  • Ali B, Hayat S, Ahmad A (2007) 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum L.). Environ Exp Bot 59:217–223

    Article  CAS  Google Scholar 

  • Ali B, Hasan SA, Hayat S et al (2008a) A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environ Exp Bot 62(2):153–159

    Article  CAS  Google Scholar 

  • Ali B, Hayat S, Fariduddin Q et al (2008b) 24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. Chemosphere 72(9):1387–1392

    Article  CAS  PubMed  Google Scholar 

  • Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 6(1):36–42

    Article  CAS  PubMed  Google Scholar 

  • Alyemeni MN, Al-Quwaiz SM (2016) Effect of 28-homobrassinolide on the performance of sensitive and resistant varieties of Vigna radiata. Saudi J Biol Sci 23(6):698–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anuradha S, Rao SSR (2007) The effect of brassinosteroids on radish (Raphanus sativus L.) seedlings growing under cadmium stress. Plant Soil Environ 53(11):465

    Article  CAS  Google Scholar 

  • Anuradha S, Rao SSR (2009) Effect of 24-epibrassinolide on the photosynthetic activity of radish plants under cadmium stress. Photosynthetica 47(2):317–320

    Article  CAS  Google Scholar 

  • Arfan M, Athar HR, Ashraf M (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol 164(6):685–694

    Article  CAS  PubMed  Google Scholar 

  • Asha A, Lingakumar K (2015) Effect of 24-epibrassinolide on the morphological and biochemical constitutions Vigna unguiculata (L.) seedlings. Ind J Sci Res Technol 3(1):35–39

    Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199(5):361–376

    Article  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51(2):163–190

    Article  CAS  Google Scholar 

  • Ashraf M, Sultana R (2000) Combination effect of NaCl salinity and nitrogen form on mineral composition of sunflower plants. Biol Plant 43(4):615–619

    Article  CAS  Google Scholar 

  • Avudainayagam S, Megharaj M, Owens G et al (2003) Chemistry of chromium in soils with emphasis on tannery waste sites. Reviews of environmental contamination and toxicology. Springer, New York, pp 53–91

    Chapter  Google Scholar 

  • Badger MR, Price GD (1994) The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Biol 45(1):369–392

    Article  CAS  Google Scholar 

  • Bai MY, Shang JX, Oh E et al (2012) Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat Cell Biol 14:810–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajguz A (2009) Brassinosteroid enhanced the level of abscisic acid in Chlorella vulgaris subjected to short-term heat stress. J Plant Physiol 166(8):882–886

    Article  CAS  PubMed  Google Scholar 

  • Bajguz A, Czerpak R (1998) Physiological and biochemical role of brassinosteroids and their structure activity relationship in the green alga Chlorella vulgaris Beijerinck (Chlorophyceae). Plant Growth Regul 17:131–139

    Article  CAS  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Bancos S, Nomura T, Sato T, Molnar G, Bishop GJ, Koncz C, Yokota T, Nagy F, Szekeres M (2002) Regulation of transcript levels of the Arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis. Plant Physiol 130:504–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bancos S, Szatmari AM, Castle J, Kozma-Bognar L, Shibata K, Yokota T, Bishop GJ, Nagy F, Szekeres M (2006) Diurnal regulation of the brassinosteroid-biosynthetic CPD gene in Arabidopsis. Plant Physiol 141:299–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 134:1624–1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barceló JUAN, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13(1):1–37

    Article  Google Scholar 

  • Behnamnia M, Kalantari KM, Rezanejad F (2009) Exogenous application of brassinosteroid alleviates drought-induced oxidative stress in Lycopersicon esculentum L. Gen Appl Plant Physiol 35:22–34

    CAS  Google Scholar 

  • Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31(1):491–543

    Article  Google Scholar 

  • Bhatia DS, Kaur J (1997) Effect of homobrassinolide and humicil on chlorophyll content, hill activity and yield components in mungbean Vigna radiata (L.) Wilczek. Phytomorphology 47(4):421–426

    Google Scholar 

  • Braun P, Wild A (1984) The influence of brassinosteroid on growth and parameters of photosynthesis of wheat and mustard plants. J Plant Physiol 116(3):189–196

    Article  CAS  PubMed  Google Scholar 

  • Chen LM, Lin CC, Kao CH (2000) Copper toxicity in rice seedlings: changes in antioxidative enzyme activities, H2O2 level, and cell wall peroxidase activity in roots. Bot Bull Acad Sin 41:99–103

    CAS  Google Scholar 

  • Chen C, Huang D, Liu J (2009) Functions and toxicity of nickel in plants: recent advances and future prospects. CLEAN Soil Air Water 37(4–5):304–313

    Article  CAS  Google Scholar 

  • Choudhary SP, Kanwar M, Bhardwaj R et al (2012a) Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS ONE 7(3):e33210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K et al (2012b) Benefits of brassinosteroid crosstalk. Trends Plant Sci 17:594–605

    Article  CAS  PubMed  Google Scholar 

  • Chugh LK, Gupta VK, Sawhney SK (1992) Effect of cadmium on enzymes of nitrogen metabolism in pea seedlings. Phytochemistry 31(2):395–400

    Article  CAS  Google Scholar 

  • Clouse SD, Langford M, McMorris TC (1996) A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol 111(3):671–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coste S, Baraloto C, Leroy C et al (2010) Assessing foliar chlorophyll contents with the SPAD-502 chlorophyll meter: a calibration test with thirteen tree species of tropical rainforest in French Guiana. Ann For Sci 67(6):607

    Article  Google Scholar 

  • Dalio RJD, Pinheiro HP, Sodek L et al (2011) The effect of 24-epibrassinolide and clotrimazole on the adaptation of Cajanus cajan (L.) Millsp. to salinity. Acta Physiol Plant 33(5):1887–1896

    Article  CAS  Google Scholar 

  • Dhaubhadel S, Chaudhary S, Dobinson KF et al (1999) Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Mol Biol 40(2):333–342

    Article  CAS  PubMed  Google Scholar 

  • Domagalska MA, Schomburg FM, Amasino RM, Vierstra RD, Nagy F, Davis SJ (2007) Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Development 134:2841–2850

    Article  CAS  PubMed  Google Scholar 

  • Dubey RS (2005) Photosynthesis in plants under stressful conditions. In: Pessarakli M (ed) Handbook of photosynthesis, 2nd edn. CRC Press/Taylor and Francis Group, New York, pp 717–737

    Google Scholar 

  • Ekinci M, Yildirim E, Dursun A et al (2012) Mitigation of salt stress in lettuce (Lactuca sativa L. var. Crispa) by seed and foliar 24-epibrassinolide treatments. HortScience 47(5):631–636

    CAS  Google Scholar 

  • Ernst WHO (1980) Biochemical aspects of cadmium in plants. In: Nriagu JO (ed) Cadmium in the environment, Part 1. John Wiley, New York, pp 639–653

    Google Scholar 

  • Esk M, Esk A (2013) Effects of 28-homobrassinolide on growth, photosynthesis and essential oil content of Satureja khuzestanica. Int J Plant Physiol Biochem 5(3):36–41

    Article  CAS  Google Scholar 

  • Farazi E, Afshari H, Abadi HH (2015) Effect of different concentrations of brassinosteroid on physiomorphological characteristics of five pistachio genotypes (Pistacia vera L.). J Nuts 6(2):143–153

    Google Scholar 

  • Fariduddin Q, Ahmad A, Hayat S et al (2000) The response of chickpea, raised from the seeds pre-treated with 28-homobrassinolide. In: National seminar on plant physiological paradigm for fostering agro and biotechnology and augmenting environmental productivity in millennium, p 134

  • Fariduddin Q, Ahmad A, Hayat S (2003) Photosynthetic response of Vigna radiata to pre-sowing seed treatment with 28-homobrassinolide. Photosynthetica 41(2):307–310

    Article  CAS  Google Scholar 

  • Fariduddin Q, Ahmad A, Hayat S (2004) Responses of Vigna radiata to foliar application of 28-homobrassinolide and kinetin. Biol Plant 48(3):465–468

    Article  CAS  Google Scholar 

  • Fariduddin Q, Yusuf M, Hayat S et al (2009) Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. Environ Exp Bot 66:418–424

    Article  CAS  Google Scholar 

  • Fariduddin Q, Yusuf M, Chalkoo S et al (2011) 28-homobrassinolide improves growth and photosynthesis in Cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress. Photosynthetica 49(1):55–64

    Article  CAS  Google Scholar 

  • Fariduddin Q, Khalil RR, Mir BA et al (2013) 24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environ Monit Assess 185(9):7845–7856

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Wahid A, Basra SMA (2009) Improving water relations and gas exchange with brassinosteroids in rice under drought stress. J Agron Crop Sci 195(4):262–269

    Article  CAS  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55(396):307–319

    Article  CAS  PubMed  Google Scholar 

  • Fujita S, Ohnishi T, Watanabe B, Yokota T, Takatsuto S, Fujioka S, Yoshida S, Sakata K, Mizutani M (2006) Arabidopsis CYP90B1 catalyses the early C-22 hydroxylation of C-27, C-28 and C-29 sterols. Plant J 45:765–774

    Article  CAS  PubMed  Google Scholar 

  • Gabr MA, Fathi MA, Azza IM et al (2011) Influences of some chemical substances used to induce early harvest of ‘Canino’ apricot trees. Nat Sci 9(8):59–65

    Google Scholar 

  • Grove MD, Spencer GF, Rohwedder WK et al (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217

    Article  CAS  Google Scholar 

  • Gruszka D (2013) The brassinosteroid signaling pathway-new key players and interconnections with other signaling networks crucial for plant development and stress tolerance. Int J Mol Sci 14(5):8740–8774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gudesblat GE, Schneider-Pizon J, Betti C, Mayerhofer J, Vanhoutte I, van Dongen W, Boeren S, Zhiponova M, de Vries S, Jonak C, Russinova E (2012) SPEECHLESS integrates brassinosteroid and stomata signalling pathways. Nat Cell Biol 14:548–554

    Article  CAS  PubMed  Google Scholar 

  • Gururani MA, Upadhyaya CP, Strasser RJ et al (2012) Physiological and biochemical responses of transgenic potato plants with altered expression of PSII manganese stabilizing protein. Plant Physiol Biochem 58:182–194

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radical, transition metals and disease. Biochem J 219:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamada K (1986) Brassinolide in crop cultivation. Plant growth regulators in agriculture. FFTC Book Ser 34:188–196

    CAS  Google Scholar 

  • Han YJ, Song PS, Kim JI (2007) Phytochrome-mediated photomorphogenesis in plants. J Plant Biol 50:230–240

    Article  CAS  Google Scholar 

  • Hanano S, Domagalska MA, Nagy F, Davis SJ (2006) Multiple phytohormones influence distinct parameters of the plant circadian clock. Genes Cells 11:1381–1392

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Ahmad A, Mobin M et al (2001a) Carbonic anhydrase, photosynthesis, and seed yield in mustard plants treated with phytohormones. Photosynthetica 39(1):111–114

    Article  CAS  Google Scholar 

  • Hayat S, Ahmad A, Mobin M et al (2001b) Photosynthetic rate, growth, and yield of mustard plants sprayed with 28-homobrassinolide. Photosynthetica 38(3):469–471

    Article  Google Scholar 

  • Hayat S, Ali B, Hasan SA et al (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60(1):33–41

    Article  CAS  Google Scholar 

  • Hayat S, Hasan SA, Hayat Q et al (2010) Brassinosteroids protect Lycopersicon esculentum from cadmium toxicity applied as shotgun approach. Protoplasma 239(1–4):3–14

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Yadav S, Wani AS et al (2011) Comparative effect of 28-homobrassinolide and 24-epibrassinolide on the growth, carbonic anhydrase activity and photosynthetic efficiency of Lycopersicon esculentum. Photosynthetica 49(3):397–404

    Article  CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN et al (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He JX, Gendron JM, Sun Y et al (2005) BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307:1634–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holá D, Rothová O, Kočová M et al (2010) The effect of brassinosteroids on the morphology, development and yield of field-grown maize. Plant Growth Regul 61(1):29–43

    Article  CAS  Google Scholar 

  • Hopkins WJ (1995) Introduction to plant physiology. Wiley, New York

    Google Scholar 

  • Hu WH, Yan XH, Xiao YA et al (2013a) 24-Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Sci Hortic 150:232–237

    Article  CAS  Google Scholar 

  • Hu YJ, Shi LX, Sun W et al (2013b) Effects of abscisic acid and brassinolide on photosynthetic characteristics of Leymus chinensis from Songnen plain grassland in Northeast China. Bot Stud 54(1):42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Janeczko A, Koscielniak J, Pilipowicz M et al (2005) Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica 43(2):293–298

    Article  CAS  Google Scholar 

  • Janeczko A, Gullner G, Skoczowski A et al (2007) Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves. Biol Plant 51(2):355–358

    Article  CAS  Google Scholar 

  • Janeczko A, Gruszka D, Pociecha E et al (2016) Physiological and biochemical characterisation of watered and drought-stressed barley mutants in the HvDWARF gene encoding C6-oxidase involved in brassinosteroid biosynthesis. Plant Physiol Biochem 99:126–141

    Article  CAS  PubMed  Google Scholar 

  • Jiang YP, Cheng F, Zhou YH et al (2012) Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus. J Zhejiang Univ Sci B 13(10):811–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapoor D, Rattan A, Gautam V et al (2014) 24-Epibrassinolide mediated changes in photosynthetic pigments and antioxidative defence system of radish seedlings under cadmium and mercury stress. J Stress Physiol Biochem 10(3):110–121

    Google Scholar 

  • Khan S, Cao Q, Zheng YM et al (2008) Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut 152(3):686–692

    Article  CAS  PubMed  Google Scholar 

  • Kim TW, Guan S, Sun Y et al (2009) Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol 11:1254–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim TW, Michniewicz M, Bergmann DC et al (2012) Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature 482:419–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita T, Cano-Delgado A, Seto H et al (2005) Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433:167–171

    Article  CAS  PubMed  Google Scholar 

  • Koca H, Bor M, Özdemir F et al (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60(3):344–351

    Article  CAS  Google Scholar 

  • Krumova S, Zhiponova M, Dankov K et al (2013) Brassinosteroids regulate the thylakoid membrane architecture and the photosystem II function. J Photochem Photobiol B Biol 126:97–104

    Article  CAS  Google Scholar 

  • Küpper H, Götz B, Mijovilovich A et al (2009) Complexation and toxicity of copper in higher plants. I. Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a new copper accumulator. Plant Physiol 151(2):702–714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Nam KH (2002) Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science 295:1299–1301

    CAS  PubMed  Google Scholar 

  • Li L, Xu J, Xu ZH, Xue HW (2005) Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. Plant Cell 17:2738–2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li TY, Zhang Y, Liu H et al (2010) Stable expression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1, and salt tolerance in transgenic soybean for over six generations. Chin Sci Bull 55(12):1127–1134

    Article  CAS  Google Scholar 

  • Li YH, Liu YJ, Xu XL et al (2012) Effect of 24-epibrassinolide on drought stress-induced changes in Chorispora bungeana. Biol Plant 56(1):192–196

    Article  CAS  Google Scholar 

  • Li XJ, Guo X, Zhou YH et al (2016) Overexpression of a brassinosteroid biosynthetic gene dwarf enhances photosynthetic capacity through activation of Calvin cycle enzymes in tomato. BMC Plant Biol 16(1):33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maestri E, Klueva N, Perrotta C et al (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48(5–6):667–681

    Article  CAS  PubMed  Google Scholar 

  • Maity U, Bera AK (2009) Effect of exogenous application of brassinolide and salicylic acid on certain physiological and biochemical aspects of green gram (Vigna radiata L. Wilczek). Indian J Agric Res 43(3):194–199

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, New York

    Google Scholar 

  • Mohanty N, Vass I, Demeter S (1989) Impairment of photosystem 2 activity at the level of secondary quinone electron acceptor in chloroplasts treated with cobalt, nickel and zinc ions. Physiol Plant 76(3):386–390

    Article  CAS  Google Scholar 

  • Moroney JV, Bartlett SG, Samuelsson G (2001) Carbonic anhydrases in plants and algae. Plant Cell Environ 24:141–153

    Article  CAS  Google Scholar 

  • Mossor-Pietraszewska T (2001) Effect of aluminium on plant growth and metabolism. Acta Biochim Pol Engl Edit 48(3):673–686

    CAS  Google Scholar 

  • Nath K, Jajoo A, Poudyal RS et al (2013) Towards a critical understanding of the photosystem II repair mechanism and its regulation during stress conditions. FEBS Lett 587:3372–3381

    Article  CAS  PubMed  Google Scholar 

  • Nellaepalli S, Zsiros O, Toth T et al (2014) Heat- and light-induced detachment of the light harvesting complex from isolated photosystem I supercomplexes. J Photochem Photobiol B Biol 137:13–20

    Article  CAS  Google Scholar 

  • Nishiyama Y, Murata N (2014) Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl Microbiol Biotechnol 98:8777–8796

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2011) Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol Plant 142:35–46

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol 164:1636–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogweno JO, Song XS, Shi K et al (2008) Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J Plant Growth Regul 27(1):49–57

    Article  CAS  Google Scholar 

  • Oh MH, Wang X, Wu X et al (2010) Autophosphorylation of Tyr-610 in the receptor kinase BAK1 plays a role in brassinosteroid signaling and basal defense gene expression. Proc Natl Acad Sci 107:17827–17832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh MH, Sun J, Oh DH et al (2011) Enhancing Arabidopsis leaf growth by engineering the BRASSINOSTEROID INSENSITIVE1 receptor kinase. Plant Physiol 157:120–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan J, Lin S, Woodbury NW (2012) Bacteriochlorophyll excited-state quenching pathways in bacterial reaction centres with the primary donor oxidized. J Phys Chem B 116(6):2014–2022

    Article  CAS  PubMed  Google Scholar 

  • Pandey DM, Goswami CL, Kumar B (2001) Hormonal regulation of photosynthetic enzymes in cotton under water stress. Photosynthetica 38(3):403–407

    Article  Google Scholar 

  • Pareek A, Singla SL, Grover A (1998) Protein alterations associated with salinity, desiccation, high and low temperature stresses and abscisic acid application in lal nakanda, a drought tolerant rice cultivar. Curr Sci 75(11):1170–1174

    CAS  Google Scholar 

  • Peng P, Yan Z, Zhu Y, Li J (2008) Regulation of the Arabidopsis GSK3-like kinase BRASSINOSTEROID-INSENSITIVE 2 through proteasome-mediated protein degradation. Mol Plant 1:338–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng H, Zhao J, Neff MM (2015) ATAF2 integrates Arabidopsis brassinosteroid inactivation and seedling photomorphogenesis. Development 142:4129–4138

    Article  CAS  PubMed  Google Scholar 

  • Perveen S, Shahbaz M, Ashraf M (2010) Regulation in gas exchange and quantum yield of photosystem II (PSII) in salt-stressed and non-stressed wheat plants raised from seed treated with triacontanol. Pak J Bot 42:3073–3081

    CAS  Google Scholar 

  • Pinheiro HA, Silva JV, Endres L (2008) Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L.) seedlings subjected to salt stress conditions. Ind Crops Prod 27(3):385–392

    Article  CAS  Google Scholar 

  • Piñol R, Simón E (2009) Effect of 24-epibrassinolide on chlorophyll fluorescence and photosynthetic CO2 assimilation in Vicia faba plants treated with the photosynthesis-inhibiting herbicide terbutryn. J Plant Growth Regul 28(2):97–105

    Article  CAS  Google Scholar 

  • Pociecha E, Dziurka M, Oklestkova J et al (2016) Brassinosteroids increase winter survival of winter rye (Secale cereale L.) by affecting photosynthetic capacity and carbohydrate metabolism during the cold acclimation process. Plant Growth Regul 80:127–135

    Article  CAS  Google Scholar 

  • Pociecha E, Dziurka D, Waligórski P et al (2017) 24-Epibrassinolide pre-treatment modifies cold-induced photosynthetic acclimation mechanisms and phytohormone response of perennial ryegrass in cultivar-dependent manner. J Plant Growth Regul 36:618–628

    Article  CAS  Google Scholar 

  • Portis AR Jr (1992) Regulation of ribulose 1, 5-bisphosphate carboxylase/oxygenase activity. Annu Rev Plant Biol 43(1):415–437

    Article  CAS  Google Scholar 

  • Poschenrieder C, Gunse B, Barceló J (1989) Influence of cadmium on water relations, stomatal resistance, and abscisic acid content in expanding bean leaves. Plant Physiol 90(4):1365–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad SM, Dwivedi R, Zeeshan M (2005) Growth, photosynthetic electron transport, and antioxidant responses of young soybean seedlings to simultaneous exposure of nickel and UV-B stress. Photosynthetica 43(2):177–185

    Article  CAS  Google Scholar 

  • Rady MM (2011) Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci Hortic 129(2):232–237

    Article  CAS  Google Scholar 

  • Raven JA, Evans MC, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60(2–3):111–150

    Article  CAS  Google Scholar 

  • Reddy MP, Vora AB (1986) Changes in pigment composition, Hill reaction activity and saccharides metabolism in Bajra (Pennisetum typhoides S & H) leaves under NaCl salinity. Photosynthetica 20(1):50–55

    CAS  Google Scholar 

  • Rhodes D, Nadolska-Orczyk A, Rich PJ (2002) Salinity, osmolytes and compatible solutes. Salinity: environment-plants-molecules. Springer, The Netherlands, pp 181–204

    Google Scholar 

  • Sairam RK (1994) Effects of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture-stress conditions of two wheat varieties. Plant Growth Regul 14(2):173–181

    Article  CAS  Google Scholar 

  • Serna M, Hernández F, Coll F et al (2012) Brassinosteroid analogues effect on yield and quality parameters of field-grown lettuce (Lactuca sativa L.). Sci Hortic 143:29–37

    Article  CAS  Google Scholar 

  • Shahbaz M, Ashraf M (2008) Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? Plant Growth Regul 55(1):51–64

    Article  CAS  Google Scholar 

  • Sharma I, Ching E, Saini S et al (2013) Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiol Biochem 69:17–26

    Article  CAS  PubMed  Google Scholar 

  • Sheoran IS, Singal HR, Singh R (1990) Effect of cadmium and nickel on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeonpea (Cajanus cajan L.). Photosynth Res 23(3):345–351

    Article  CAS  PubMed  Google Scholar 

  • Simões-Araújo JL, Rumjanek NG, Margis-Pinheiro M (2003) Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. Braz J Plant Physiol 15(1):33–41

    Article  Google Scholar 

  • Singh I, Shono M (2005) Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regul 47(2–3):111–119

    Article  CAS  Google Scholar 

  • Singh PK, Tewari RK (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J Environ Biol 24(1):107–112

    CAS  PubMed  Google Scholar 

  • Singh I, Kumar U, Singh SK et al (2012) Physiological and biochemical effect of 24-epibrassinoslide on cold tolerance in maize seedlings. Physiol Mol Biol Plants 18(3):229–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sofo A, Tuzio AC, Dichio B et al (2005) Influence of water deficit and rewatering on the components of the ascorbate–glutathione cycle in four interspecific Prunus hybrids. Plant Sci 169(2):403–412

    Article  CAS  Google Scholar 

  • Stobart AK, Griffiths WT, Ameen-Bukhari I et al (1985) The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiol Plant 63(3):293–298

    Article  CAS  Google Scholar 

  • Sültemeyer D, Schmidt C, Fock HP (1993) Carbonic anhydrases in higher plants and aquatic microorganisms. Physiol Plant 88(1):179–190

    Article  Google Scholar 

  • Swamy KN, Rao SSR (2009) Effect of 24-epibrassinolide on growth, photosynthesis, and essential oil content of Pelargonium graveolens (L.) Herit Russ. Plant Physiol 56(5):616–620

    CAS  Google Scholar 

  • Swamy KN, Vardhini BV, Ramakrishna B et al (2014) Role of 28-homobrassinolide on growth biochemical parameters of Trigonella foneu-graecum L. plants subjected to lead toxicity. Int J Multidiscip Curr Res 2:317–321

    Google Scholar 

  • Symons GM, Ross JJ, Jager CE et al (2008) Brassinosteroid transport. J Exp Bot 59(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16:53–60

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Asami T, Yoshida S, Nakamura Y, Matsuo T, Okamoto S (2005) Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism. Plant Physiol 138:1117–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornton LE, Peng H, Neff MM (2011) Rice CYP734A cytochrome P450s inactivate brassinosteroids in Arabidopsis. Planta 234:1151–1162

    Article  CAS  PubMed  Google Scholar 

  • Thussagunpanit J, Jutamanee K, Kaveeta L (2015) Comparative effects of brassinosteroid and brassinosteroid mimic on improving photosynthesis, lipid peroxidation, and rice seed set under heat stress. J Plant Growth Regul 34(2):320–331

    Article  CAS  Google Scholar 

  • Tikkanen M, Aro EM (2014) Integrative regulatory network of plant thylakoid energy transduction. Trends Plant Sci 19:10–17

    Article  CAS  PubMed  Google Scholar 

  • Uddling J, Gelang-Alfredsson J, Piikki K et al (2007) Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth Res 91(1):37–46

    Article  CAS  PubMed  Google Scholar 

  • Vassilev A, Yordanov I (1997) Reductive analysis of factors limiting growth of cadmium-treated plants: a review. Bulg J Plant Physiol 23(3–4):114–133

    CAS  Google Scholar 

  • Vert G, Chory J (2006) Downstream nuclear events in brassinosteroid signaling. Nature 441:96–100

    Article  CAS  PubMed  Google Scholar 

  • Wang SG (1997) Influence of brassinosteroid on rice seedling growth. Int Rice Res Notes (Philippines) 22:20–21

    Google Scholar 

  • Wang ZY, Bai MY, Oh E, Zhu JY (2012) Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet 46:701–724

    Article  CAS  PubMed  Google Scholar 

  • Weast RC (1984) CRC handbook of chemistry and physics, 64th edn. CRC, Boca Raton

    Google Scholar 

  • Went FW, Thimann KV (1937) Phytohormones. Macmillan, New York, p 3

    Google Scholar 

  • Wise RR, Naylor AW (1987) Chilling-enhanced photooxidation the peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. Plant Physiol 83(2):272–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff SP, Garner A, Dean RT (1986) Free radicals, lipids and protein degradation. Trends Biochem Sci 11(1):27–31

    Article  CAS  Google Scholar 

  • Wu XX, He J, Zhu ZW et al (2014) Protection of photosynthesis and antioxidative system by 24-epibrassinolide in Solanum melongena under cold stress. Biol Plant 58(1):185–188

    Article  CAS  Google Scholar 

  • Xia XJ, Huang LF, Zhou YH et al (2009) Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta 230(6):1185–1196

    Article  CAS  PubMed  Google Scholar 

  • Yang JY, Zheng W, Tian Y et al (2011) Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. Photosynthetica 49(2):275–284

    Article  CAS  Google Scholar 

  • Yin Y, Vafeados D, Tao Y et al (2005) A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120:249–259

    Article  CAS  PubMed  Google Scholar 

  • Yu JQ, Huang LF, Hu WH et al (2004) A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot 55(399):1135–1143

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Li L, Zola J, Aluru M, Ye H, Foudree A, Guo H, Anderson S, Aluru S, Liu P, Rodermel S, Yin Y (2011) A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. Plant J 65:634–646

    Article  CAS  PubMed  Google Scholar 

  • Yuan GF, Jia CG, Li Z et al (2010) Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Sci Hortic 126(2):103–108

    Article  CAS  Google Scholar 

  • Yuan L, Shu S, Sun J et al (2012) Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO3)2 stress. Photosynth Res 112:205–214

    Article  CAS  PubMed  Google Scholar 

  • Yusuf M, Fariduddin Q, Hayat S et al (2011) Protective response of 28-homobrassinolide in cultivars of Triticum aestivum with different levels of nickel. Arch Environ Contam Toxicol 60(1):68–76

    Article  CAS  PubMed  Google Scholar 

  • Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249(1):139–156

    Article  CAS  Google Scholar 

  • Zhang JH, Huang WD, Liu YP et al (2005) Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera l. cv. jingxiu) under cross-temperature stresses. J Integr Plant Biol 47(8):959–970

    Article  Google Scholar 

  • Zhang M, Zhai Z, Tian X et al (2008) Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). Plant Growth Regul 56(3):257–264

    Article  CAS  Google Scholar 

  • Zhang MK, Liu ZY, Wang H (2010) Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Commun Soil Sci Plant Anal 41(7):820–831

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4(5):401–406

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. Anna Janeczko for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamsul Hayat.

Additional information

Communicated by H Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqui, H., Hayat, S. & Bajguz, A. Regulation of photosynthesis by brassinosteroids in plants. Acta Physiol Plant 40, 59 (2018). https://doi.org/10.1007/s11738-018-2639-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2639-2

Keywords

Navigation