Skip to main content

Advertisement

Log in

A comparative cell wall proteomic analysis of cucumber leaves under Sphaerotheca fuliginea stress

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Powdery mildew, caused by Sphaerotheca fuliginea (S. fuliginea), is the most devastating disease that hampers cucumber plants cultivation and productivity. Cell wall proteins (CWPs) play a crucial role in response to biotic stress as a frontline defense of plants. In this work, we present a comparative cell wall proteomic approach to explore differentially expressed proteins in both highly resistant and highly susceptible cucumber leaves after 24 h of exposure to S. fuliginea. After extraction conducted by a destructive procedure with salts, glucose-6-phosphate dehydrogenase (G6PDH) activity and SDS-PAGE assessments were performed to determine the cytosolic contamination. Label-free quantitative proteomics approach was used to gain a comprehensive understanding of differentially regulated CWPs between the two lines after S. fuliginea inoculation. Among more than 200 proteins identified, 71 were significantly altered between the two lines. Most of these identified proteins were predicted to be CWPs except some classical cytosolic proteins. These differentially expressed CWPs belonged to different functional categories including defense, metabolism, redox regulation and cell wall arrangement. The expression levels of seven proteins selected were determined using RT-PCR. We found that resistant cucumber line is believed to start a series of disease-resistant mechanisms against pathogen. This study provides useful information on cell wall proteomic changes between a resistant and a susceptible genotype under infected conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdin MZ, Kiran U, Alam A (2011) Analysis of osmotin, a PR protein as metabolic modulator in plants. Bioinformation 5:336–340

    Article  PubMed  PubMed Central  Google Scholar 

  • Albenne C, Canut H, Jamet E (2013) Plant cell wall proteomics: the leadership of Arabidopsis thaliana. Front Plant Sci 4:1–17

    Article  Google Scholar 

  • Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31:164–172

    Article  CAS  PubMed  Google Scholar 

  • Chaki M, Valderrama R, Fernández-Ocaña AM et al (2011) High temperature triggers the metabolism of S-nitrosothiols in sunflower mediating a process of nitrosative stress which provokes the inhibition of ferredoxin-NADP reductase by tyrosine nitrationpce. Plant Cell and Environ 34:1803–1818

    Article  CAS  Google Scholar 

  • Chivasa S, Tomé DFA, Slabas AR (2013) UDP-Glucose pyrophosphorylase is a novel plant cell death regulator. J Proteome Res 12:1743–1753

    Article  CAS  PubMed  Google Scholar 

  • Cho SK, Kim JE, Park JA et al (2006) Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants. FEBS Lett 580:3136–3144

    Article  CAS  PubMed  Google Scholar 

  • Choi DS, Hong JK, Hwang BK (2013) Pepper osmotin-like protein 1 (CaOSM1) is an essential component for defense response, cell death, and oxidative burst in plants. Planta 238:1113–1124

    Article  CAS  Google Scholar 

  • Cosgrove DJ (1998) Cell wall loosening by expansins. Plant Physiol 118:333–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahal D, Pich A, Braun HP et al (2010) Analysis of cell wall proteins regulated in stem of susceptible and resistant tomato species after inoculation with Ralstonia solanacearum: a proteomic approach. Plant Mol Biol 73:643–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du CX, Fan HF, Guo SR et al (2010) Proteomic analysis of cucumber seedling roots subjected to salt stress. Phytochemistry 71:1450–1459

    Article  CAS  PubMed  Google Scholar 

  • Ellis C, Karafyllidis L, Wasternack C et al (2002) The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant cell 14:1557–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esquerré-Tugayé MT, Boudart G, Dumas B (2000) Cell wall degrading enzymes, inhibitory proteins, and oligosaccharides participate in the molecular dialogue between plants and pathogens. Plant Physiol Biochem 38:157–163

    Article  Google Scholar 

  • Ezaki B, Sasaki K, Matsumoto H et al (2005) Functions of two genes in aluminium (Al) stress resistance: repression of oxidative damage by the AtBCB gene and promotion of efflux of Al ions by the NtGDI1gene. J Exp Bot 56:2661–2671

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Chen J, Zhang C et al (2008) A Two-dimensional electrophoresis protocol suitable for proteomic analysis of cucumber leaves. J Shenyang Agric Univ 39:365–367

    CAS  Google Scholar 

  • Fan H, Chen J, Shao M et al (2009) Proteomic analysis of R17 cucumber differentially expressed proteins induced by powdery mildew fungus. Acta Hortic Sinica 36:829–834

    CAS  Google Scholar 

  • Fan H, Ren L, Meng X et al (2014) Proteome-level investigation of Cucumis sativus-derived resistance to Sphaerotheca fuliginea. Acta Physiol Plant 36:1781–1791

    Article  CAS  Google Scholar 

  • Fang R, Elias DA, Monroe ME et al (2006) Differential label-free quantitative proteomic analysis of Shewanella oneidensis cultured under aerobic and suboxic conditions by accurate mass and time tag approach molecular and cellular. Mol Cell Proteomics 5:714–725

    Article  CAS  PubMed  Google Scholar 

  • Feiz L, Irshad M, Pont-Lezica RF et al (2006) Evaluation of cell wall preparations for proteomics: a new procedure for purifying cell walls from Arabidopsis hypocotyls. Plant Methods 2:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukino N, Yoshioka Y, Sugiyama M et al (2013) Identification and validation of powdery mildew (Podosphaera xanthii)-resistant loci in recombinant inbred lines of cucumber (Cucumis sativus L.). Mol Breed 32:267–277

    Article  CAS  Google Scholar 

  • Gao C, Wang Y, Liu G et al (2009) Cloning of ten peroxidase (POD) genes from Tamarix Hispida and characterization of their responses to abiotic stress. Plant Mol Biol Rep 28:77–89

    Article  CAS  Google Scholar 

  • Garrido C, Gurbuxani S, Ravagnan L, Kroemer G (2001) Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun 286:433–442

    Article  CAS  PubMed  Google Scholar 

  • Goh HH, Sloan J, Dorca-Fornell C et al (2012) Inducible repression of multiple expansin genes leads to growth suppression during leaf development. Plant Physiol 159:1759–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gokulakannan GG, Niehaus K (2010) Characterization of the Medicago truncatula cell wall proteome in cell suspension culture upon elicitation and suppression of plant defense. J Plant Physiol 167:1533–1541

    Article  CAS  PubMed  Google Scholar 

  • González AM, Marcel TC, Kohutova Z et al (2010) Peroxidase profiling reveals genetic linkage between peroxidase gene clusters and basal host and non-host resistance to rusts and mildew in barley. PLoS One 5:e10495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grasser KD, Hetz W, Feix G (1994) Stability of the maize chromosomal high-mobility-group proteins, HMGa and HMGb, in vivo. Plant Mol Biol 25:565–568

    Article  CAS  PubMed  Google Scholar 

  • Hoegger PJ, Kilaru S, James TY et al (2006) Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 273:2308–2326

    Article  CAS  PubMed  Google Scholar 

  • Jamet E, Canut H, Boudart G et al (2006) Cell wall proteins: a new insight through proteomics. Trends Plant Sci 11:33–39

    Article  CAS  PubMed  Google Scholar 

  • Kong FJ, Oyanagi A, Komatsu S (2010) Cell wall proteome of wheat roots under flooding stress using gel-based and LC MS/MS-based proteomics approaches. Biochim Biophys Acta 1804:124–136

    Article  CAS  PubMed  Google Scholar 

  • Kooistra E (1971) Inheritance of fruit flesh and skin colors in powdery mildew resistance cucumbers (Cucumis sativas L.). Euphytica 20:521–523

    Google Scholar 

  • Kromina KA, Ignatov AN, Abdeeva IA (2008) Role of peptidyl-prolyl-cis/trans-isomerases in pathologic processes. Biol Membr 25:243–251

    CAS  Google Scholar 

  • Lee HW, Kim J (2013) Expansina17 up-regulated by LBD18/ASL20 promotes lateral root formation during the auxin response. Plant Cell Physiol 54:1600–1611

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Choi D, Kende H (2001) Expansins: ever-expanding numbers and functions. Curr Opin Plant Biol 4:527–532

    Article  CAS  PubMed  Google Scholar 

  • Li N, Wang L, Zhang W, Takechi K, Takano H, Lin X (2014) Overexpression of UDP-glucose pyrophosphorylase from Larix gmelinii enhances vegetative growth in transgenic Arabidopsis thaliana. Plant Cell Rep 33:779–791

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Ma Y, Chen N, Guo S, Liu H, Guo X, Chong K, Xu Y (2014) Overexpression of stress-inducible OsBURP16, the β subunit of polygalacturonase 1, decreases pectin content and cell adhesion and increases abiotic stress sensitivity in rice. Plant Cell Environ 37:1144–1158

    Article  CAS  PubMed  Google Scholar 

  • McQueen-Mason SJ, Cosgrove DJ (1995) Expansin mode of action on cell walls (analysis of wall hydrolysis, stress relaxation, and binding). Plant Physiol 107:87–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng X, Zhang D, Fan H et al (2015) Selection for the extraction methods of cucumber leaf cell wall proteins. J Shenyang Agric Univ 46:101–104

    Google Scholar 

  • Miedes E, Zarra I, Hoson T et al (2011) Xyloglucan endotransglucosylase and cell wall extensibility. J Plant Physiol 168:196–203

    Article  CAS  PubMed  Google Scholar 

  • Negri AS, Prinsi B, Scienza A et al (2008) Analysis of grape berry cell wall proteome: a comparative evaluation of extraction methods. J Plant Physiol 165:1379–1389

    Article  CAS  PubMed  Google Scholar 

  • Nersissian AM, Valentine JS, Mehrabian ZB et al (1996) Cloning, expression, and spectroscopic characterization of Cucumis sativus stellacyanin in its nonglycosylated form. Protein Sci 5:2184–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  CAS  PubMed  Google Scholar 

  • Peisach J, Powers L, Blumberg WE, Chance B (1982) Stellacyanin. Studies of the metal-binding site using X-ray absorption spectroscopy. Biophys J 38:277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennycooke JC, Jones ML, Stushnoff C (2003) Down-regulating (alpha)-galactosidase enhances freezing tolerance in transgenic petunia1. Plant Physiol 133:901–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereyra CM, Ramella NA, Pereyra MA et al (2010) Changes in cucumber hypocotyl cell wall dynamics caused by Azospirillum brasilense inoculation. Plant Physiol Biochem 48:62–69

    Article  CAS  PubMed  Google Scholar 

  • Peterman TK, Sequeira AS, Samia JA et al (2006) Molecular cloning and characterization of patellin1, a novel sec14-related protein, from zucchini (Cucurbita pepo). J Plant Physiol 163:1150–1158

    Article  CAS  PubMed  Google Scholar 

  • Pignocchi C, Fletcher JM, Wilkinson JE et al (2003) The function of ascorbate oxidase in tobacco. Plant Physiol 132:1631–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pignocchi C, Kiddle G, Hernández I et al (2006) Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco. Plant Physiol 141:423–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proels RK, Hückelhoven R (2014) Cell-wall invertases, key enzymes in the modulation of plant metabolism during defence responses. Mol Plant Pathol 15:858–864

    Article  CAS  PubMed  Google Scholar 

  • Quirino BF, Candido ES, Campos PF et al (2010) Proteomic approaches to study plant–pathogen interactions. Phytochemistry 71:351–362

    Article  CAS  PubMed  Google Scholar 

  • Rather IA, Awasthi P, Mahajan V et al (2015) Molecular cloning and functional characterization of an antifungal PR-5 protein from Ocimum basilicum. Gene 558:143–151

    Article  CAS  PubMed  Google Scholar 

  • Reinhammar BRM (1972) Oxidation-reduction potentials of the electron acceptors in laccases and stellacyanin. Biochim Biophys Acta 275:245–259

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RE, Lodeyro A, Poli HO et al (2007) Transgenic tobacco plants overexpressing chloroplastic Ferredoxin-NADP(H) reductase display normal rates of photosynthesis and increased tolerance to oxidative stress. Plant Physiol 143:639–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy KL, Vergauwen R, Struy T et al (2013) Understanding the role of defective invertases in plants: tobacco Nin88 fails to degrade sucrose. Plant Physiol 161:1670–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saladié M, Rose JKC, Cosgrove DJ (2006) Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action. Plant J 47:282–295

    Article  CAS  PubMed  Google Scholar 

  • Sattelmacher B (2011) The apoplast and its significance for plant mineral nutrition. New Phytol 149:167–192

    Article  Google Scholar 

  • Schwanhäusser B, Busse D, Li N et al (2011) Global quantification of mammalian gene expression control. Nature 473:337–342

    Article  CAS  PubMed  Google Scholar 

  • Segarra G, Casanova E, Bellido D et al (2007) Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7:3943–3952

    Article  CAS  PubMed  Google Scholar 

  • Sfaxi IH, Ezzine A, Coque L et al (2012) Combined proteomic and molecular approaches for cloning and characterization of copper-zinc superoxide dismutase (Cu, Zn-SOD2) from garlic (Allium sativum). Mol Biotechnol 52:49–58

    Article  CAS  Google Scholar 

  • Sharma R, Cao P, Jung K et al (2013) Construction of a rice glycoside hydrolase phylogenomic database and identification of targets for biofuel research. Front Plant Sci 4:330

    PubMed  PubMed Central  Google Scholar 

  • Shen Z, Li P, Ni RJ et al (2009) Label-free quantitative proteomics analysis of etiolated maize seedling leaves during greening. Mol Cell Proteomics 8:2443–2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirover MA (2011) On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: biochemical mechanisms and regulatory control. Biochim Biophys Acta 1810:741–751

    Article  CAS  PubMed  Google Scholar 

  • Sonnewald S, Priller JPR, Schuster J et al (2012) Regulation of cell wall-bound invertase in pepper leaves by Xanthomonas campestris pv. Vesicatoria type three effectors. PLoS one 7:e51763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun W, Montagu MV, Verbruggen NV (2002) Small heat shock proteins and stress tolerance in plants. BBA-Gene Struct Expr 1577:1–9

    Article  CAS  Google Scholar 

  • Teramoto H, Toyama T, Takeba G et al (1995) Changes in expression of two cytokinin-repressed genes, CR9 and CR20, in relation to aging, greening and wounding in cucumber. Planta 196:387–395

    Article  CAS  Google Scholar 

  • Timperio AM, Egidi MG, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteomics 71:391–411

    Article  CAS  PubMed  Google Scholar 

  • Vogel JP, Raab TK, Somerville CR et al (2004) Mutations in PMR5 result in powdery mildew resistance and altered cell wall composition. Plant J 40:968–978

    Article  CAS  PubMed  Google Scholar 

  • Wang M, You J, Bemis KG et al (2008) Label-free mass spectrometry-based protein quantification technologies in proteomic analysis. Brief Funct Genomic proteomic 7:329–339

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Zhang X, Li F et al (2011) Identification of a UDP-glucose pyrophosphorylase from cotton (Gossypium hirsutum L.) involved in cellulose biosynthesis in Arabidopsis thaliana. Plant Cell Rep 30:1303–1312

    Article  CAS  PubMed  Google Scholar 

  • Wei GQ, Zhu ZJ, Qian QQ et al (2004) Effect of silicon on resistance of cucumber powdery mildew and its physiological mechanism. Plant Nutr Fertil Sci 10:202–205

    Google Scholar 

  • Wisniewski JR, Zougman A, Nagaraj N et al (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362

    Article  CAS  PubMed  Google Scholar 

  • Witzel K, Shahzad M, Matros A et al (2011) Comparative evaluation of extraction methods for apoplastic proteins from maize leaves. Plant Methods 7:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi Y, Hasegawa A, Taninaka A et al (2011) NADPH-dependent reductases involved in the detoxification of reactive carbonyls in plants. J Biol Chem 286:6999–7009

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi Y, Hasegawa A, Mizutani M et al (2012) Chloroplastic NADPH-dependent alkenal/one oxidoreductase contributes to the detoxification of reactive carbonyls produced under oxidative stress. FEBS Lett 586:1208–1213

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Liu J (2011) Comparison of extraction effects of rice seedling apoplast proteins using different extraction buffers. China Biotechnol 31:51–55

    CAS  Google Scholar 

  • Zhou L, Bokhari SA, Dong C et al (2011) Comparative proteomics analysis of the root apoplasts of rice seedlings in response to hydrogen peroxide. PLoS One 6:e1672

    Google Scholar 

  • Zhou S, Ban M, Shang X et al (2013) Progress in powdery mildew and molecular genetics of its resistance in cucurbits vegetable. Acta Agriculturae Zhejiangensis 25:1456–1461

    Google Scholar 

  • Zhu J, Chen S, Alvarez S et al (2006) Cell wall proteome in the maize primary root elongation zone. I. Extraction and identification of water-soluble and lightly ionically bound proteins. Plant Physiol 140:311–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Smith JW, Huang CM (2010) Mass spectrometry-based label-free quantitative proteomics. J Biomed Biotechnol 2010:6

    Google Scholar 

Download references

Acknowledgments

This study was funded by the Program for Excellent Talents in University of Liaoning Province (LR2014019) and the Talents Engineering of Liaoning Province (2014921040). The authors thank Shanghai Hoogen Biotechnology Co., Ltd. for the technology support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangnan Meng or Haiyan Fan.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Additional information

Communicated by M. Stobiecki.

X. Meng and T. Song contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11738_2016_2266_MOESM1_ESM.xls

Supplementary material 1 (XLS 90 kb) Supplemental Information Additional Supporting Information may be found in the online version of this article: Table S1 Proteins were identified in B21-a-2-1-2 and B21-a-2-2-2 based on intensity-based absolute quantification method (iBAQ)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Song, T., Fan, H. et al. A comparative cell wall proteomic analysis of cucumber leaves under Sphaerotheca fuliginea stress. Acta Physiol Plant 38, 260 (2016). https://doi.org/10.1007/s11738-016-2266-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2266-8

Keywords

Navigation