Skip to main content
Log in

24-Epibrassinolide ameliorates the effects of boron toxicity on Arabidopsis thaliana (L.) Heynh by activating an antioxidant system and decreasing boron accumulation

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Brassinosteroids (BRs) play a significant role in alleviating the negative effects of various environmental stresses and in promoting the growth and development of plants. In this study, we investigated the effects of 24-epibrassinolide (EBL) on the growth, boron (B) accumulation and activation of the antioxidant system of Arabidopsis thaliana (L.) Heynh exposed to high concentrations of boric acid (BA). A. thaliana plants were grown in a hydroponic culture, and after 4 weeks, the plants were transferred to media containing either 0.80 or 1.60 mM BA. Following BA treatment, 0.01 and 1 µM EBL was sprayed on the entire foliar region of the seedlings. B toxicity induced oxidative stress and considerably inhibited the growth of the plants. The spraying of EBL on the B-treated plants resulted in increases in growth (both fresh and dry shoot mass, silique number, length and mass) and pigment content (total chlorophyll and carotenoids). Excessive B levels increased the activities of antioxidant enzymes, including superoxide dismutase, catalase, ascorbate peroxidase, and guaiacol peroxidase, and increased the proline content in leaves of plants. However, treatment of the B-stressed plants with EBL further enhanced the activities of the antioxidant enzymes and increased the content of proline. The high level of lipid peroxidation in plants observed during exposure to a higher level of BA was decreased following EBL treatment. Thus, this study showed that the exogenous application of EBL ameliorates the toxic effects of B in a model plant by improving the plant’s antioxidant system and decreasing B accumulation. To our knowledge, this is the one of the first studies to examine the effect of BR in plants subjected to B toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

B:

Boron

BA:

Boric acid

BL:

Brassinolide

BR:

Brassinosteroid

CAT:

Catalase

Chl:

Chlorophyll

CS:

Castasterone

EBL:

24-Epibrassinolide

EDTA:

Ethylenediamine tetraacetic acid

GPX:

Guaiacol peroxidase

ICP-OES:

Inductively coupled plasma optical emission spectrometry

HBL:

28-Homobrassinolide

MDA:

Malondialdehyde

NBT:

Nitroblue tetrazolium

PVPP:

Polyvinylpolypyrrolidone

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TBA:

Thiobarbituric acid

TCA:

Trichloroacetic acid

References

  • Aftab T, Khan MMA, Idrees M, Naeem M, Ram M (2010) Boron induced oxidative stress, antioxidant defence response and changes in artemisinin content in Artemisia annua L. J Agron Crop Sci 196:423–430

    Article  CAS  Google Scholar 

  • Aftab T, Khan MMA, Idrees M, Naeem M, Moinuddin, Hashmi N (2011) Methyl jasmonate counteracts boron toxicity by preventing oxidative stress and regulating antioxidant enzyme activities and artemisinin biosynthesis in Artemisia annua L. Protoplasma 248:601–612

    Article  CAS  PubMed  Google Scholar 

  • Ahammed GJ, Choudhary SP, Chen S, Xia X, Shi K, Zhou Y, Yu J (2013) Role of brassinosteroids in alleviation of phenanthrene-cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato. J Exp Bot 64(1):199–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali B, Hasan SA, Hayat S, Hayat Q, Yadav S (2008) A role for brassinosteroid in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environ Exp Bot 62:153–159

    Article  CAS  Google Scholar 

  • Aquea F, Federici F, Moscoso C, Vega A, Jullian P, Haseloff J, Arce-Johnson P (2012) A molecular framework for the inhibition of Arabidopsis root growth in response to boron toxicity. Plant Cell Environ 35:719–734

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated choloroplast, polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajguz A (2000) Blockade of heavy metals accumulation in Chlorella vulgaris cells by 24-epibrassinolide. Plant Physiol Bioch 38:797–801

    Article  CAS  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Bioch 47:1–8

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Bergmeyer M (1970) Methoden der enzymatischen analyse. Akad Verl 1:636–647

    Google Scholar 

  • Bolanos L, Lukaszewski K, Bonilla I, Blevins D (2004) Why boron? Plant Physiol Bioch 42:907–912

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brown PH, Shelp BJ (1997) Boron mobility in plants. Plant Soil 193:83–101

    Article  Google Scholar 

  • Brown PH, Bellaloui N, Wimmer MA, Bassil ES, Ruiz J, Hu H, Pfeffer H, Dannel F, Römheld V (2002) Boron in plant biology. Plant Biology 4:205–223

    Article  CAS  Google Scholar 

  • Camacho-Cristobal JJ, Rexach J, González-Fontes A (2008) Boron in plants: defiency and toxicity. J Integr Plant Biol 50:1247–1255

    Article  CAS  PubMed  Google Scholar 

  • Cervilla LM, Blasco B, Rios JJ, Romeo L, Ruiz JM (2007) Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plant subjected to boron toxicity. Ann Bot 100:747–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choe S, Tanaka A, Noguchi T, Fujioka S, Takatsuto S, Ross AS, Tax FE, Yoshida S, Feldmann KA (2000) Lesions in the sterol Δ7 reductase gene of Arabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis. Plant J 21(5):431–443

    Article  CAS  PubMed  Google Scholar 

  • Clouse SD, Hall AF, Langford M, McMorris TC, Baker ME (1993) Physiological and molecular effects of brassinosteroids on Arabidopsis thaliana. J Plant Growth Regul 12:61–66

    Article  CAS  Google Scholar 

  • El-Khallal SM, Hathout TA, Ahsour ARA, Kerrit AAA (2009) Brassinolide and salicylic acid induced antioxidant enzymes, hormonal balance and protein profile of maize plants grown under salt stress. Res J Agric Biol Sci 5(4):391–402

    CAS  Google Scholar 

  • Fu FQ, Mao WH, Shi K, Zhou YH, Asami T, Yu JQ (2008) A role of brassinosteroids in early fruit development in cucumber. J Exp Bot 59(9):2299–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara T, Hirai YM, Chino M, Komeda Y, Naito S (1992) Effects of sulfur nutrition on expression of the soybean seed storage protein genes in transgenic petunia. Plant Physiol 99:263–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg S, Shouse PJ, Lesch SM, Grieve CM, Poss JA, Forster HS, Suarez DL (2003) Effect of high boron application on boron content and growth of melons. Plant Soil 256:403–411

    Article  CAS  Google Scholar 

  • Han S, Tang N, Jiang HX, Yang LT, Li Y, Chen LS (2009) CO2 assimilation, photosystem II photochemistry, carbonhydrate metabolism and antioxidant system of citrus leaves in response to boron stress. Plant Sci 176:143–153

    Article  CAS  Google Scholar 

  • Hasan SA, Hayat S, Ahmad A (2011) Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere 84:1446–1451

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Ali B, Hasan A, Ahmad A (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60:33–41

    Article  CAS  Google Scholar 

  • Hayat S, Alyemeni MN, Hasan SA (2012a) Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi J Biol Sci 19:325–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayat S, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012b) Role of proline under changing environments. Plant Signal Behav 7(11):1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera-Rodriguez MB, Gonzalez-Fontes A, Rexach J, Camacho-Cristóbal JJ, Maldonado JM, Navarro-Gochicoa MT (2010) Role of boron in vascular plants and response mechanism to boron stress. Plant Stress 4(2):115–122

    Google Scholar 

  • Hola D, Rothova O, Kocova M, Kohout L, Kvasnica M (2010) The effect of brassinosteroid on the morphology, development and yield of field-grown maize. Plant Growth Regul 61:29–43

    Article  CAS  Google Scholar 

  • Kastori RR, Maksimovic IV, Kraljevic-Balalic MM, Kobiljski BD (2008) Physiological and genetic basis of plant tolerance to excess boron. Proc Nat Sci Matica Srpska Novi Sad 114:41–51

    Article  CAS  Google Scholar 

  • Khripach VA, Zhabinskii VN, Khripach NB (2003) New pratical aspects of brassinosteroids and results of their 10-year agricultural use in Russia and Balarus. In: Hayat S, Ahmad A (eds) Brassinosteroids: bioactivity and crop productivity. Kluwer Academic Publisher, Dordrecht, pp 189–230

    Chapter  Google Scholar 

  • Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Regul 22:289–297

    Article  CAS  PubMed  Google Scholar 

  • Landi M, Degl’Innocenti E, Pardossi A, Guidi L (2012) Antioxidant and photosynthetic responses in plants under boron toxicity: a review. Am J Agric Biol Sci 7:255–270

    Article  CAS  Google Scholar 

  • Landi M, Remorini D, Pardossi A, Guidi L (2013) Boron excess affects photosynthesis and antioxidant apparatus of greenhouse Cucurbita pepo and Cucumis sativus. J Plant Res 126:775–786

    Article  CAS  PubMed  Google Scholar 

  • Landi M, Guidi L, Pardossi A, Tattini M, Gould KS (2014) Photoprotection by foliar anthocyanins mitigates effects of boron toxicity in sweet basil (Ocimum basilicum). Planta 240:941–953

    Article  CAS  PubMed  Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solution. J Biol Chem 140:315–322

    CAS  Google Scholar 

  • Madhava Rao KV, Stresty TVS (2000) Antioxidantive parameters in the seedling of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stress. Plant Sci 157:113–128

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Nable RO, Banuelos GS, Paull JG (1997) Boron toxicity. Plant Soil 193:181–198

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Ogweno JO, Song XS, Shi K, Hu WH, Mao WH, Zhou YH, Yu JQ, Nogués S (2008) Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carbonxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J Plant Growth Regul 27:49–57

    Article  CAS  Google Scholar 

  • Oh MH, Sun J, Oh DH, Zielinski RE, Clouse SD, Huber SC (2011) Enhancing Arabidopsis leaf growth by engineering the BRASSINOSTEROID INSENSITIVE1 receptor kinase. Plant Physiol 157:120–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papadakis IE, Dimassi KN, Therios IN (2003) Response of two citrus genotypes to six boron concentrations: concentration and distribution of nutrients, total absorption, and nutrient use efficiency. Aust J Agric Res 54(6):571–580

    Article  CAS  Google Scholar 

  • Papadakis IE, Dimassi N, Bosabalidis AM, Therios IN, Patakas A, Giannakoula A (2004) Boron toxicity in ‘Clementine’ mandarin plants grafted on two rootstocks. Plant Sci 166:539–547

    Article  CAS  Google Scholar 

  • Radojevic M, Bashkin VN (1999) Pratical environmental analysis. The Royal Society of Chemistry, Cornwall

    Google Scholar 

  • Rady MM (2011) Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci Hortic 129:232–237

    Article  CAS  Google Scholar 

  • Reid R (2007) Update on boron toxicity and tolerance in plants. In: Xu F, Goldbach HE, Brown PH, Bell RW, Fujiwara T, Hunt CD, Goldberg S, Shi L (eds) Advances in plant and animal boron nutrition. Springer, Dordrecht, pp 83–90

    Chapter  Google Scholar 

  • Sasse JM (2003) Physiological actions of brassinosteroids: an update. J Plant Growth Regul 22:276–288

    Article  CAS  PubMed  Google Scholar 

  • Scebba F, Sebastiani L, Vitagliano C (2001) Activities of antioxidant enzymes during senescence of Prunus armeniaca leaves. Biol Plant 44:41–46

    Article  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365

    Article  PubMed  Google Scholar 

  • Shahbaz M, Ashraf M, Athar HR (2008) Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? Plant Growth Regul 55:51–64

    Article  CAS  Google Scholar 

  • Sharma P, Bhardwaj R (2007) Effect of 24-epibrassinolide on seed germination, seedling growth and heavy metal uptake in Brassica juncea L. Genet Appl Plant Physiol 33(1–2):59–73

    CAS  Google Scholar 

  • Sharma P, Bhardwaj R, Arora N, Arora HK, Kumar A (2008) Effects of 28-homobrassinolide on nickel uptake, protein content and antioxidative defence system in Brassica juncea. Biol Plant 52(4):767–770

    Article  CAS  Google Scholar 

  • Sharma I, Ching E, Saini S, Bhardwaj R, Pati PK (2013) Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiol Bioch 69:17–26

    Article  CAS  Google Scholar 

  • Shomron N, Ast G (2003) Boric acid reversibly inhibits the second step of pre-mRNA splicing. FEBS Lett 552:219–224

    Article  CAS  PubMed  Google Scholar 

  • Smeets K, Ruytinx J, Belleghem FV, Semane B, Lin D, Vangronsveld J, Cuypers A (2008) Critical evaluation and statistical validation of a hydroponic culture system for Arabidopsis thaliana. Plant Physiol Biochem 46:212–218

    Article  CAS  PubMed  Google Scholar 

  • Stangoulis JCR, Reid RJ (2002) Boron toxicity in plants and animals. In: Goldbach HE, Rerkasem B, Wimmer MA, Brown PH, Thellier M, Bell RW (eds) Boron in plant and animal nutrition. Kluwer Academic, New York, pp 227–241

    Chapter  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97

    Article  CAS  PubMed  Google Scholar 

  • Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150:801–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie L, Yang C, Wang X (2011) Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis. J Exp Bot 62(13):4495–4506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan GF, Jia CG, Li Z, Sun B, Zhang LP, Liu N, Wang QM (2010) Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Sci Hortic 126:103–108

    Article  CAS  Google Scholar 

  • Yusuf M, Fariduddin Q, Ahmad A (2011) 28-Homobrassinolide mitigates boron induced toxicity through enhanced antioxidant system in Vigna radiata plants. Chemosphere 85(10):1574–1584

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Tang Q, Hua X (2010) Arabidopsis brassinosteroid muatants det2-1 and bin2-1 display altered salt tolerance. J Plant Growth Regul 29:44–52

    Article  Google Scholar 

  • Zhang C, Bai M, Chong K (2014) Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Rep 33:683–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project was a part of PhD thesis of Y. Surgun and funded by the Muğla Sıtkı Koçman University Scientific Research Projects Coordination (Project Number 2011/36).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonca Surgun.

Additional information

Communicated by S. Renault.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surgun, Y., Çöl, B. & Bürün, B. 24-Epibrassinolide ameliorates the effects of boron toxicity on Arabidopsis thaliana (L.) Heynh by activating an antioxidant system and decreasing boron accumulation. Acta Physiol Plant 38, 71 (2016). https://doi.org/10.1007/s11738-016-2088-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2088-8

Keywords

Navigation