Skip to main content
Log in

Genotoxic effects due to in vitro culture and H2O2 treatments in Petunia × hybrida cells monitored through DNA diffusion assay, FPG-SCGE and gene expression profile analyses

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In the present work, Petunia × hybrida leaf discs maintained on regeneration medium for 8 days were used to assess the effects of genotoxic stress induced by in vitro culture. The investigation was carried out by comparing the response of intact leaves excised from Petunia × hybrida plantlets grown in vitro and the regenerating leaf discs. In situ detection by histochemical staining and alkaline-Single Cell Gel Electrophoresis (SCGE) analysis demonstrated that both reactive oxygen species accumulation and DNA damage were enhanced in explants cultured in vitro. Significant up-regulation of the PhOGG1 (8-oxoguanine DNA glycosylase/lyase), PhAPX (ascorbate peroxidase) and PhMT2 (metallothionein) genes involved in DNA repair and antioxidant defence was observed in the explants cultured in vitro, compared to intact leaves. The Petunia × hybrida leaf discs were exposed to increasing (0, 100, 150, 200 and 400 mM) doses of the model genotoxic agent hydrogen peroxide (H2O2) and then analysed. The DNA diffusion assay highlighted the dose- and time-dependent fluctuations of programmed cell death/necrosis events in response to H2O2. Leaf discs treated with increasing H2O2 concentration and untreated controls were analysed by FPG-SCGE to assess the level of oxidative DNA damage at different time points following treatments. The PhOGG1, PhAPX and PhMT2 genes were significantly up-regulated in response to H2O2, reaching the highest transcript levels with the 150 mM dose. Based on the reported data, these genes might be used as molecular indicators of the genotoxic stress response in Petunia × hybrida cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

BA:

Benzyladenine

BER:

Base excision repair

DAB:

3,3′-Diaminobenzidine

DAPI:

4′,6-Diamino-2-phenylindole

DSB:

Double strand break

FPG:

Formamidopyrimidine-DNA glycosylase

MT:

Metallothionein

8-oxo-Dg:

7, 8-Dihydro-8-oxoguanine

Ph:

Petunia × hybrida

NBT:

Nitroblue tetrazolium

PCD:

Programmed cell death

OGG1:

8-Oxoguanine DNA glycosylase/lyase

QRT-PCR:

Quantitative real-time polymerase chain reaction

ROS:

Reactive oxygen species

SCGE:

Single cell gel electrophoresis

SSB:

Single strand break

References

  • Angenent GC, Stuurman J, Snowden KC, Koes R (2005) Use of Petunia to unravel plant meristem functioning. Trends Plant Sci 10:243–250

    Article  CAS  PubMed  Google Scholar 

  • Balestrazzi A, Botti S, Zelasco S, Biondi S, Franchin C, Calligari P, Racchi M, Turchi A, Lingua G, Berta G, Carbonera D (2009) Expression of the PsMT A1 gene in white poplar engineered with the MAT system is associated to heavy metal tolerance and protection against 8-hydroxy-2′-deoxyguanosine mediated-DNA damage. Plant Cell Rep 28:1179–1192

    Article  CAS  PubMed  Google Scholar 

  • Balestrazzi A, Confalonieri M, Macovei A, Carbonera D (2010) Seed imbibition in Medicago truncatula Gaertn.: expression profiles of DNA repair genes in relation to PEG-mediated stress. J Plant Physiol 168:706–713

    Article  PubMed  Google Scholar 

  • Balestrazzi A, Confalonieri M, Macovei A, Donà M, Carbonera D (2011a) Genotoxic stress and DNA repair in plants: emerging functions and tools for improving crop productivity. Plant Cell Rep 30:287–295

    Article  CAS  PubMed  Google Scholar 

  • Balestrazzi A, Agoni V, Tava A, Avato P, Biazzi E, Raimondi E, Macovei A, Carbonera D (2011b) Cell death induction and nitric oxide biosynthesis in white poplar (Populus alba L.) suspension cultures exposed to alfalfa saponins. Physiol Plant 141:227–238

    Article  CAS  PubMed  Google Scholar 

  • Balestrazzi A, Macovei A, Tava A, Avato P, Raimondi E, Carbonera D (2011c) Unraveling the response of plant cells to cytotoxic saponins: role of metallothionein and nitric oxide. Plant Sign Behav 6:1–4

    Article  Google Scholar 

  • Balestrazzi A, Confalonieri M, Macovei A, Donà M, Carbonera D (2012) Genotoxic stress, DNA repair and crop productivity. In: Tuteja N, Gill SS (eds) Crop improvement under adverse conditions. Springer, Berlin/Heidelberg, pp 153–170

  • Brunner AM, Yakovlev IA, Strauss SH (2004) Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol 4:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Cassels AC, Curry RF (2001) Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagation and genetic engineering. Plant Cell Tissue Org Cult 64:145–157

    Article  Google Scholar 

  • Collins AR (2004) The comet assay for DNA damage and repair. Mol Biotech 26:249–261

    Article  CAS  Google Scholar 

  • Dimova EG, Bryant PE, Chankova SG (2008) ‘Adaptive response’-some underlying mechanisms and open questions. Gen Mol Biol 31:396–408

    Article  Google Scholar 

  • Donà M, Ventura L, Macovei A, Confalonieri M, Savio M, Giovannini A, Carbonera D, Balestrazzi A (2013) Gamma irradiation with different dose rates induces different DNA damage responses in Petunia × hybrida cells. J Plant Physiol 170:780–787

    Article  PubMed  Google Scholar 

  • Freisinger E (2011) Structural features specific to plant metallothioneins. J Biol Chem 16:1035–1045

    CAS  Google Scholar 

  • Fryer MJ, Oxborough K, Mullineaux PM, Baker NR (2002) Imaging of photooxidative stress responses in leaves. J Exp Bot 53:1249–1254

    Article  CAS  PubMed  Google Scholar 

  • Gerats T, Vandenbussche M (2005) A model system for comparative research: petunia. Trends Plant Sci 10:251–256

    Article  CAS  PubMed  Google Scholar 

  • Gichner T, Mukherjee A, Wagner ED, Plewa MJ (2005) Evaluation of the nuclear DNA diffusion assay to detect apoptosis and necrosis. Mutat Res 586:38–46

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Giovannini A, Nicoletti F, Dente F, Balestrazzi A, Donà M, Macovei A, Carbonera D, Ventura L, Buttafava A, Langella R, Albani M (2012) Mutation breeding for improving ornamental traits in commercial micropropagated varietes. Acta Italus Hortus 4:72–75

    Google Scholar 

  • Girard PM, Guibourt N, Boiteux S (1997) The OGG1 protein of Saccharomyces cerevisiae: a 7,8-dihydro-8-oxoguanine DNA glycosylase/AP lyase whose lysine 241 is a critical residue from catalytic activity. Nucleic Acids Res 25:3204–3211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hassinen VH, Tervahanta AI, Schat H, Karenlampi SO (2010) Plant metallothioneins—metal chelators with ROS scavenging activity. Plant Biol 13:225–232

    Article  PubMed  Google Scholar 

  • Hogg BV, Kacprzyk J, Molony EM, O’Reilly C, Gallagher TF, Gallois P, McCabe PF (2011) An in vitro root hair assay for determining rates of apoptotic-like programmed cell death in plants. Plant Methods 7:45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotech Biochem 72:1143–1154

    Article  CAS  Google Scholar 

  • Jain SM (2010) Mutagenesis in crop improvement under the climate change. Rom Biotech Lett 15:88–106

    Google Scholar 

  • Kakar K, Wandrey M, Czechowski T, Gaertner T, Scheible WR, Stitt M, Torres-Jerez I, Xiao Y, Redman J, Wu HC, Cheung F, Town CD, Udvardi MK (2008) A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula. Plant Methods 4:18

    Article  PubMed Central  PubMed  Google Scholar 

  • Larkin JP, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theoret Appl Genet 60:197–214

    Article  CAS  Google Scholar 

  • Macovei A, Balestrazzi A, Confalonieri M, Carbonera D (2010) The Tdp1 (tyrosyl-DNA phosphodiesterase) gene family in Medicago truncatula Gaertn.: bioinformatic investigation and expression profiles in response to copper- and PEG-mediated stress. Planta 232:393–407

    Article  CAS  PubMed  Google Scholar 

  • Macovei A, Balestrazzi A, Confalonieri M, Faè M, Carbonera D (2011a) New insights on the barrel medic MtOGG1 and MtFPG functions in relation to oxidative stress response in planta and during seed imbibition. Plant Physiol Biochem 49:1040–1050

    Article  CAS  PubMed  Google Scholar 

  • Macovei A, Balestrazzi A, Confalonieri M, Buttafava A, Carbonera D (2011b) The TFIIS and TFIIS-like genes from Medicago truncatula are involved in oxidative stress response. Gene 470:20–30

    Article  CAS  PubMed  Google Scholar 

  • McKim S, Hay A (2010) Patterning and evolution of floral structures-marking time. Curr Opin Genet Dev 20:448–453

    Article  CAS  PubMed  Google Scholar 

  • Menke M, Meister A, Schubert I (2000) N-methyl-N-nitrosourea-induced DNA damage detected by the comet assay in Vicia faba nuclei during interphase stages is not restricted to chromatid aberration hotspots. Mutagenesis 15:503–506

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:73–79

    Article  Google Scholar 

  • Murphy TM, George A (2005) A comparison of two DNA base excision repair glycosylases from Arabidopsis thaliana. Biochem Biophy Res Commu 329:869–872

    Article  CAS  Google Scholar 

  • Pages V, Fuchs RPP (2002) How DNA lesions are turned into mutations within cells? Oncogene 21:8957–8966

    Article  CAS  PubMed  Google Scholar 

  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Vanonckelen HA, Dudits D, Feher A (2000) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129:1807–1819

    Article  Google Scholar 

  • Ramakers C, Ruijter JM, Lekanne Deprez RH, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  CAS  PubMed  Google Scholar 

  • Reape TJ, McCabe PF (2010) Apoptotic-like regulation of programmed cell death in plants. Apoptosis 15:249–256

    Article  CAS  PubMed  Google Scholar 

  • Roldan-Arjona T, Ariza RR (2009) Repair and tolerance of oxidative DNA damage in plants. Mutat Res 681:169–179

    Article  CAS  PubMed  Google Scholar 

  • Sanderson RJ, Mobaugh DW (1998) Fidelity and mutational specificity of uracil-initiated base excision DNA repair synthesis in human glioblastoma cell extracts. J Biol Chem 273:24822–24831

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Hosokawa M, Doi M (2011) Somaclonal variation is induced de novo via the tissue culture process: a study quantifying mutated cells in Saintpaulia. PLoS ONE 6:e23541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shu QY (2009) Turning plant mutation into a new era: molecular mutation breeding. Induced plant mutations in the genomic era. FAO, Rome, pp 425–427

    Google Scholar 

  • Singh NP (2000) A simple method for accurate estimation of apoptotic cells. Exp Cell Res 256:328–337

    Article  CAS  PubMed  Google Scholar 

  • Singh NP (2003) Apoptosis by DNA diffusion assay. In: Blumenthal R (ed) Methods in molecular medicine-chemiosensitivity. Humana Press, New York, pp 78–94

    Google Scholar 

  • Singh NP (2005) Apoptosis assessment by the DNA diffusion assay. Methods Mol Med 111:55–67

    CAS  PubMed  Google Scholar 

  • Stavreva DA, Gichner T (2002) DNA damage induced by hydrogen peroxide in cultured tobacco cells is dependent on the cell growth stage. Mutation Res 514:147–152

    Article  CAS  PubMed  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdwry mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Ventura L, Donà M, Macovei A, Carbonera D, Buttafava A, Mondoni A, Rossi G, Balestrazzi A (2012) Understanding the molecular pathways associated with seed vigor. Plant Physiol Biochem 60:196–206

    Article  CAS  PubMed  Google Scholar 

  • Wessels A, Van Berlo D, Boots AW, Gerloff K, Van Shooten FJ, Albrecht C, Schins RP (2011) Oxidative stress and DNA damage responses in rat and mouse lung to inhaled carbon nanoparticles. Nanotoxicol 5:66–78

    Article  CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Devis R, Rkiishi S, Matsumoto H (2001) Aluminum toxicity is associated with mitochondrial disfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128:63–72

    Article  Google Scholar 

  • Zielinska A, Davies OT, Meldrum RA, Hodges NJ (2011) Direct visualization of repair of oxidative damage by OGG1 in the nucleus of live cells. J Biochem Mol Toxicol 25:1–7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Dr. Raffaele Langhella and Albani Vincenzo e Ruggeri Italina s.s.a., via Fontanatetta 158, 00053 Civitavecchia (RO) for supplying the P. ×  hybrida genotype. This research was supported by the ‘MUTAFLOR’ project from the Italian Ministry of Agriculture-MiP.A.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Balestrazzi.

Additional information

Communicated by Y. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ventura, L., Macovei, A., Donà, M. et al. Genotoxic effects due to in vitro culture and H2O2 treatments in Petunia × hybrida cells monitored through DNA diffusion assay, FPG-SCGE and gene expression profile analyses. Acta Physiol Plant 36, 331–341 (2014). https://doi.org/10.1007/s11738-013-1415-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1415-6

Keywords

Navigation