Skip to main content

Advertisement

Log in

Cascade transduction and production of the light-nitric oxide signal from shoots to roots in maize seedlings exposed to enhanced UV-B radiation

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The biomasses, rate of apparent nitric oxide (NO)-release, nitric oxide synthase (NOS) activity as well as β-d-endo and exo-glucanase activity of the cell wall were analyzed and determined in the roots of maize seedlings. It was found that rhizospheric treatments of 2-phenyl-4,4,5,5-tetramethlimida-zoline-l-oxyl-3-oxide (PTIO), a NO scavenger, and radiation of enhanced ultraviolet-B (UV-B) to aerial parts of the seedling markedly inhibited the rate of NO release in roots, raised the activity of β-d-endo and exo-glucanase, and increased the biomasses of roots. The patent inhibitor, N-nitro-l-arginine (LNNA), of NOS was unable to inhibit NOS activity and NO generation. Inversely, reactive oxygen species (ROS) eliminator, N-acetyl-cysteine (NAC), stimulated the rate of NO release. There is no relationship between NOS activity and the rate of NO release. The latter showed a positive correlation with nitrate reductase (NR) activity, whereas it showed a negative correlation with the bio-masses and the activity of β-d-endo and exo-glucanase. All results implicated that NO was a by-product generated by NR catalysis, whereas NR activity was sensitively repressed by the systemic signal network (involved in ROS) induced by enhanced UV-B. It indicated that the downstream signal molecule of enhanced UV-B light is probably ROS which decreased NO generation through inhibiting NR activity. The endogenous NO generated by NR catalysis is perhaps such a messenger for restraining β-d-endo and exo-glucanase activity that the root growth was retarded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CK:

Normal level

LNNA:

N-nitro-l-arginine

NAC:

N-acetyl-cysteine

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NR:

Nitrate reductase

PTIO:

2-phenyl-4,4,5,5-tetramethylimidazoline-l-oxyl-3-oxide

ROS:

Reactive oxygen species

SNP:

Sodium nitroprusside

UV-B:

Ultraviolet-B

References

  • Alvarez ME, Penell RI, Meijer PJ (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–784

    Article  PubMed  CAS  Google Scholar 

  • An L, Liu Y, Zhang M, Chen T, Wang X (2005) Effects of nitric oxide on growth of maize seedling leaves in the presence or absence of ultraviolet-b radiation. J Plant Physiol 162(3):317–326

    Article  PubMed  CAS  Google Scholar 

  • Barroso JB, Corpas FJ, Carreras A, Sandalio LM, Valderrama R, Palma JM, Lupiannez JA, Del Rio LA (1999) Localization of nitric-oxide synthase in plant peroxisomes. J Biol Chem 274:36729–36733

    Article  PubMed  CAS  Google Scholar 

  • Beligni MV, Lamattina L (1999) Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 208:337–344

    Article  CAS  Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221

    Article  PubMed  CAS  Google Scholar 

  • Beligni MV, Lamattina L (2001) Nitric oxide in plants: the history is just beginning. Plant Cell Environ 24:267–278

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dyes binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Caldwell MM (1971) Solar ultraviolet radiation and the growth and 21 development of higher plant. In: Giese AC (ed) Photophysiology, vol 6. Academic Press, New York, pp 131–177

    Google Scholar 

  • Caldwell MM, Björn LO, Bornman JF, Flint SD, Kulandaivelu G, Teramura AH, Tevini M (1998) Effects of increased solar ultraviolet radiation on terrestrial ecosystems. J Photochem Photobiol B: Biol 46:40–52

    Article  CAS  Google Scholar 

  • Chen Z, Silva H, Klessing DF (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883–1886

    Article  PubMed  CAS  Google Scholar 

  • Correia CM, Torres-Pereira MS, Torres-Pereira JMG (1999) Growth, photo-synthesis and UV-B absorbing compounds of Portuguese Barbela wheat exposed to ultraviolet-B radiation. Environ Pollut 104:383–388

    Article  CAS  Google Scholar 

  • Crawford NM, Guo FQ (2005) New insights into nitric oxide metabolism and regulatory functions. Trends Plant Sci 10:195–200

    Article  PubMed  CAS  Google Scholar 

  • Crawford NM, Galli M, Tischner R, Heimer YM, Okamoto M, Mack A (2006) Response to Zemojtel et al.: plant nitric oxide synthase: back to square one. Trends Plant Sci 11:526–527

    Article  CAS  Google Scholar 

  • Cueto M, Hernández-Perera O, Martín R, Bentura ML, Rodrigo J, Lamas S, Golvano MP (1996) Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Lett 398:159–164

    Article  PubMed  CAS  Google Scholar 

  • Darley CP, Forrester AM, McQueen-Mason SJ (2001) The molecular basis of plan cell wall extension. Plant Mol Biol 47:179–795

    Article  PubMed  CAS  Google Scholar 

  • Dean JV, Harper JE (1986) Nitric oxide and nitrous oxide production by soybean and winged bean during the in vivo nitrate reductase assay. Plant Physiol 88:718–723

    Article  Google Scholar 

  • Dean JV, Harper JE (1988) The conversion of nitrite to nitrogen oxides by the constitutive NAD(P)H-nitrate reductase enzyme from soybean. Plant Physiol 88:389–395

    Article  PubMed  CAS  Google Scholar 

  • Durner J, Klessing DF (1999) Nitric oxide as a signal in plants. Curr Opin Plant Biol 2:369–374

    Article  PubMed  CAS  Google Scholar 

  • Forde BG, Lorenzo H (2001) The nutritional control of root development. Plant Soil 232:51–68

    Article  CAS  Google Scholar 

  • Goshima N, Mukai T, Suemori M, Takahashi M, Caboche M, Morikawa H (1999) Emission of nitrous oxide (N2O) from transgenic tobacco expressing antisense NiR mRNA. Plant J 19:75–80

    Article  PubMed  CAS  Google Scholar 

  • Gouvéa CMCP, Souza JF, Magalhaes ACN, Martins IS (1997) NO releasing substances that induce growth elongation in maize root segments. Plant Growth Regul 21:183–187

    Article  Google Scholar 

  • Greenberg BM, Wilson MI, Huang XD, Duxbury CL, Gerhardt KE, Gensemer RW (1997) The effects of ultraviolet-B radiation on higher plants. In: Wang W, Gorsuch JW, Hughes JS (eds) Plants for environmental studies. CRC Lewis Publishers, Boca Raton, pp 1–35

    Google Scholar 

  • Guo FQ (2006) Response to Zemojtel et al.: plant nitric oxide synthase: AtNOS1 is just the beginning. Trends Plant Sci 11:527–528

    Article  CAS  Google Scholar 

  • Guo FQ, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100–103

    Article  PubMed  CAS  Google Scholar 

  • Hereid DP, Monson RK (2001) Nitrogen oxide fluxes between corn (Zea mays L.) leaves and the atmosphere. Atmospheric Environ 35:975–983

    Article  CAS  Google Scholar 

  • Hevel JM, Marletta MA (1994) Nitric oxide synthase assays. Meth Enzymol 233:250–258

    Article  PubMed  CAS  Google Scholar 

  • Huber DJ, Nevins DJ (1980) β-d-Glucan hydrolase activity in Zea coleoptile cell walls. Plant Physiol 65:768–773

    Article  PubMed  CAS  Google Scholar 

  • Inouhe M, Nevins DJ (1998) Changes in the activities and polypeptide levels of exo- and endoglucanases in cell walls during developmental growth of Zea mays coleoptiles. Plant Cell Physiol 39:762–768

    CAS  Google Scholar 

  • Kaiser WM, Huber SC (2001) Post-translational regulation of nitrate reductase: mechanisms, physiological relevance and environmental triggers. J Exp Bot 52:1981–1989

    Article  PubMed  CAS  Google Scholar 

  • Klepper L (1979) Nitric oxide (NO) and nitrogen dioxide (NO2) emissions from herbicide-treated soybean plants. Atmos Environ 13:537–542

    Article  CAS  Google Scholar 

  • Kolbert ZS, Bartha B, Erdei L (2008) Exogenous auxin-induced NO synthesis is nitrate reductase-associated in Arabidopsis thaliana root primordia. J Plant Physiol 165(9):967–975

    Article  PubMed  CAS  Google Scholar 

  • Kopyra M, Gwód EA (2003) Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 41:1011–1017

    Article  CAS  Google Scholar 

  • Kouichi S, Keita H, Kazuyuki W, Takayuki H, Seiichiro K (1999) Increased molecular mass of hemicellulosic polysaccharides is involved in growth inhibition of maize coleoptiles and mesocotyls under hypergravity conditions. J Plant Res 112:273–278

    Article  Google Scholar 

  • Lydon J, Teramura AH, Summers EG (1986) Effects of ultraviolet-B radiation on growth and productivity of field-grown soybean. In: Worrest RC (ed) Stratospheric ozone reduction, solar ultraviolet radiation and plant life. Springer, Berlin, pp 313–325

    Google Scholar 

  • Mackerness SA-H (2000) Plant responses to ultraviolet-B (UV-B: 280–320 nm) stress: what are the key regulators? Plant Growth Regul 32:27–39

    Article  CAS  Google Scholar 

  • Mallick N, Monte FH, Soeder CJ (2000) Evidence supporting nitrite-dependent NO release by the green microalga Scenedesmus obliquus. J Plant Physiol 157:40–46

    CAS  Google Scholar 

  • Moureaux T, Leydecker MT, Meyer C (1989) Purification of nitrate reductase from Nicotiana plumbaginifolia by affinity chromatography using 5′ AMP-Sepharose and monoclonal antibodies. Eur J Biochem 179:617–620

    Article  PubMed  CAS  Google Scholar 

  • Murphy ME, Noack E (1994) Nitric oxide assay using hemoglobin method. Meth Enzymol 233:241–250

    Google Scholar 

  • Ninnemann H, Maier J (1996) Indication for occurrence of nitric oxide synthases in fungi and plants and involvement in photoconidiation of Neurospora crassa. Photochem Photobiol 64:393–398

    Article  PubMed  CAS  Google Scholar 

  • Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129:954–956

    Article  PubMed  CAS  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lamattina L (2003) Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol 132:1241–1248

    Article  PubMed  CAS  Google Scholar 

  • Qu Y, Feng H, Wang Y, Zhang M, Cheng J, Wang X, An L (2006) Nitric oxide functions as a signal in ultraviolet-B induced inhibition of pea stems elongation. Plant Sci 170:994–1000

    Article  CAS  Google Scholar 

  • Ribeiro EA, Cunha FQ, Tamashiro WMSC, Martins LS (1999) Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells. FEBS Lett 445:283–286

    Article  PubMed  CAS  Google Scholar 

  • Robinson D (1994) The responses of plants to non-uniform supplies of nutrients. New Phytol 127:635–674

    Article  CAS  Google Scholar 

  • Robinson D (2001) Root proliferation, nitrate inflow and their carbon costs during nitrogen capture by competing plants in patchy soil. Plant Soil 232:41–50

    Article  CAS  Google Scholar 

  • Sakihama Y, Nakamura S, Yamasaki H (2002) Nitric oxide production mediated by nitrate reductase in the Green Alga Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthetic organisms. Plant Cell Physiol 43(3):290–297

    Article  PubMed  CAS  Google Scholar 

  • Sakurai N (1991) Cell wall functions in growth and development. A physical and chemical point of view. Bot Mag Tokyo 104:235–251

    Article  Google Scholar 

  • Somogyi M (1952) Note on sugar determinations. J Biol Chem 195:19–23

    CAS  Google Scholar 

  • Stöhr C, Ullrich WR (2002) Generation and possible roles of NO in plant roots and their apoplastic space. J Exp Bot 53(379):2293–2303

    Article  PubMed  CAS  Google Scholar 

  • Stöhr C, Strube F, Marx G, Ullrich WR, Rockel P (2001) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212:835–841

    Article  PubMed  Google Scholar 

  • Takahashi S, Yamasaki H (2002) Reversible inhibition of photosphorylation in chloroplasts by nitric oxide. FEBS Lett 512:145–148

    Article  PubMed  CAS  Google Scholar 

  • Tenhaken R, Rubel C (1998) Cloning of putative subunits of the soybean plasma membrane NADPH oxidase involved in the oxidative burst by antibody expression screening. Protoplasma 205:21–28

    Article  CAS  Google Scholar 

  • Terasaki S, Sakurai N, Yamamoto R, Wada N, Nevins DJ (2001) Changes in cell wall polysaccharides of kiwifruit and the viscoelastic properties detected by laser Doppler method. J Jpn Soc Hort Sci 70:572–580

    Article  CAS  Google Scholar 

  • Thomas BR, Inouhe M, Simmons CR, Nevins DJ (2000) Endo-1,3,1,4-β-glucanase from coleoptiles of rice and maize: role in the regulation of plant growth. Int J Biol Macromol 27:145–149

    Article  PubMed  CAS  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    Article  CAS  Google Scholar 

  • Vaucheret H, Kronenberger J, Lepingle A, Vilaine F, Boutin J, Caboche M (1992) Inhibition of tobacco nitrite reductase activity by expression of antisense RNA. Plant J 2:559–569

    PubMed  CAS  Google Scholar 

  • Wang Y, Feng H, Qu Y, Cheng J, Zhao Z, Zhang M, Wang X, An L (2006) The relationship between reactive oxygen species and nitric oxide in ultraviolet-B-induced ethylene production in leaves of maize seedlings. Environ Exp Bot 57:51–61

    Article  CAS  Google Scholar 

  • Wildt J, Kley D, Rockel A, Rockel P, Segschneider HJ (1997) Emission of NO from several higher plant species. J Geophys Res 102:5919–5927

    Article  CAS  Google Scholar 

  • Yamasaki H (2000) Nitrite-dependent nitric oxide production pathway: implication for involvement of active nitrogen species in photoinhibition in vivo. Phil Trans R Soc Land B 355:1477–1488

    Article  CAS  Google Scholar 

  • Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468:89–92

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4:128–129

    Article  PubMed  Google Scholar 

  • Yamasaki H, Shimoji H, Ohshiro Y, Sakihama Y (2001) Inhibitory effects of nitric oxide on oxidative phosphorylation in plant mitochondria. Nitric Oxide 5:261–270

    Article  PubMed  CAS  Google Scholar 

  • Zemojtel T, Fröhlich A, Palmieri MC, Kolanczyk M, Mikula I, Wyrwicz LS, Wanker EE, Mundlos S, Vingron M, Martasek P, Durner J (2006) Plant nitric oxide synthase: a never-ending story? Trends Plant Sci 11:524–525

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, An L, Feng H, Chen T, Chen K, Liu Y, Tang H, Chang J, Wang X (2003) The cascade mechanisms of nitric oxide as a second messenger of ultaviolet-B in inhibiting mesocotyl elongations. Photochem Photobiol 77(2):219–225

    Article  PubMed  CAS  Google Scholar 

  • Zhao ZG, Chen GC, Zhang CL (2001) Interaction between reactive oxygen species and nitric oxide in drought abscisic acid synthesis in root tips of wheat seedlings. Aust J Plant Physiol 28:1055–1061

    CAS  Google Scholar 

  • Zhao MG, Tian QY, Zhang WH (2007) Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 144(1):206–217

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The Gansu Province Natural Science Fund (3ZS051-A25-067) and the Natural Science Fund of China (No: 30670319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhe An.

Additional information

Communicated by G. Bartosz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Liu, G., Chen, T. et al. Cascade transduction and production of the light-nitric oxide signal from shoots to roots in maize seedlings exposed to enhanced UV-B radiation. Acta Physiol Plant 31, 175–185 (2009). https://doi.org/10.1007/s11738-008-0218-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-008-0218-7

Keywords

Navigation