Skip to main content
Log in

Expression of several genes involved in sucrose/starch metabolism as affected by different strategies to induce phosphate deficiency in Arabidopsis

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The effects of inorganic phosphate (Pi) deficiency on expression of genes encoding ADP-glucose pyrophosphorylase small and large subunits (ApS and ApL1, ApL2, ApL3 genes), UDP-glucose pyrophosphorylase (Ugp gene), sucrose synthase (Sus1), soluble and insoluble acid invertases (Inv and Invcw) and hexokinase (Hxk1 gene), all involved in carbohydrate metabolism, were investigated in Arabidopsis thaliana (L.) Heynh. We used soil-grown pho mutants affected in Pi status, as well as wild-type (wt) plants grown under Pi deficiency conditions in liquid medium, and leaves of wt plants fed with D-mannose. Generally, ApS, ApL1, Ugp and Inv genes were upregulated, although to a varied degree, under conditions of Pi-stress. The applied conditions had differential effects on expression of other genes studied. For instance, Sus1 was downregulated in pho1 (Pi-deficient) mutant, but was unaffected in wt plants grown in liquid medium under P-deficiency. Mannose had distinct concentration-dependent effects on expression of genes under study, possibly reflecting a dual role of mannose as a sink for Pi and as glucose analog. Feeding Pi (at up to 200 mM) to the detached leaves of wt plants strongly affected the expression of ApL1, ApL2, Sus1 and Inv genes, possibly due to an osmotic effect exerted by Pi. The data suggest that ADP-glucose and UDP-glucose pyrophosphorylases (enzymes indirectly involved in Pi recycling) as well as invertases (sucrose hydrolysis) are transcriptionally regulated by Pi-deficiency, which may play a role in homeostatic mechanisms that acclimate the plant to the Pi-stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AGPase:

ADP-glucose pyrophosphorylase

HXK:

hexokinase

pho1 :

Pi-deficient mutant

pho2 :

Pi-overaccumulator mutant

Pi:

inorganic phosphate

-P:

phosphorus-deficient plants

+P:

phosphorus-sufficient plants

SuSy:

sucrose synthase

UGPase:

UDP-glucose pyrophosphorylase

References

  • Abel S., Ticconi C.A., Delatorre C.A. 2002. Phosphate sensing in higher plants. Physiol. Plant. 115: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Ciereszko I. 2000. Growth and metabolism of plants under phosphate deficiency (in Polish). Kosmos 49: 179–189.

    CAS  Google Scholar 

  • Ciereszko I. 2003. Molecular responses of plants to phosphate starvation (in Polish). Post py Biologii Komórki 29: 269–289.

    Google Scholar 

  • Ciereszko I., Barbachowska A. 2000. Sucrose metabolism in leaves and roots of bean (Phaseolus vulgaris L.) during phosphate deficiency. J. Plant Physiol. 156: 640–644.

    CAS  Google Scholar 

  • Ciereszko I., Janonis A., Kociakowska M. 2002. Growth and metabolism of cucumber (Cucumis sativus L.) in phosphate-deficient conditions. J. Plant Nutrition 25: 1115–1127.

    Article  CAS  Google Scholar 

  • Ciereszko I., Johansson H., Hurry V., Kleczkowski L.A. 2001a. Phosphate status affects the gene expression, protein content and enzymatic activity of UDP-glucose pyrophosphorylase in wild-type and pho mutants of Arabidopsis. Planta 212: 598–605.

    Article  PubMed  CAS  Google Scholar 

  • Ciereszko I., Johansson H., Kleczkowski L.A. 2001b. Sucrose and light regulation of a cold-inducible UDP-glucose pyrophosphorylase gene via a hexokinase-independent and abscisic acid-insensitive pathway in Arabidopsis. Biochem. J. 354: 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Ciereszko I., Kleczkowski L.A. 2002a. Effects of phosphate deficiency and sugars on expression of rab18 in Arabidopsis: hexokinase-dependent and okadaic acid-sensitive transduction of the sugar signal. Biochim. Biophys. Acta 1579: 43–49.

    PubMed  CAS  Google Scholar 

  • Ciereszko I., Kleczkowski L.A. 2002b. Glucose and mannose regulate the expression of a major sucrose synthase gene in Arabidopsis via different hexokinase-dependent transduction mechanisms. Plant Physiol. Biochem. 40: 907–911.

    Article  CAS  Google Scholar 

  • Ciereszko I., Milosek I., Rychter A.M. 1999. Assimilate distribution in bean plants (Phaseolus vulgaris L.) during phosphate deficiency. Acta Soc. Bot. Pol. 68: 269–273.

    Google Scholar 

  • Déjardin A., Sokolov L.N., Kleczkowski L.A. 1999. Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochem. J. 344: 503–509.

    Article  PubMed  Google Scholar 

  • Gibeaut D.M. 2000. Nucleotide sugars and glucosyltransferases for synthesis of cell wall matrix polysaccharides. Plant Physiol. Biochem. 38: 69–80.

    Article  CAS  Google Scholar 

  • Gniazdowska A., Mikulska M., Rychter A.M. 1998. Growth, nitrate uptake and respiration rate in bean roots under phosphate deficiency. Biol. Plant. 41: 217–226.

    Article  CAS  Google Scholar 

  • Gniazdowska A, Szal B, Rychter AM. 1999. The effect of phosphate deficiency on membrane phospholipid composition of bean (Phaseolus vulgaris L.) roots. Acta Physiol. Plant. 21: 263–269.

    CAS  Google Scholar 

  • Hammond J.P., Bennett M. J., Bowen H. C., Broadley M. R., Eastwood D. C., May S. T., Rahn C., Swarup R., Woolaway K. E., White P. J. 2003. Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol. 132: 578–596.

    Article  PubMed  CAS  Google Scholar 

  • Härtel H., Essigmann B., Lokstein H., Hoffmann-Benning S., Peters-Kottig M., Benning C. 1998. The phospholipid-deficient pho1 mutant of Arabidopsis thaliana is affected in the organization, but not in the light acclimation of the thylakoid membrane. Biochim. Biophys. Acta 1415: 205–218.

    Article  PubMed  Google Scholar 

  • Hauschild T., Ciereszko I., Maleszewski S. 1996. Influence of phosphorus deficiency on post-irradiation burst of CO2 from bean (Phaseolus vulgaris L.) leaves. Photosynthetica 32: 1–9.

    CAS  Google Scholar 

  • Herold A., Lewis D.H. 1977. Mannose and green plants: occurrence, physiology and metabolism, and use as a tool to study the role of orthophosphate. New Phytol. 79: 1–40.

    Article  CAS  Google Scholar 

  • Juszczuk I.M., Wagner A.M., Rychter A.M. 2001. Regulation of alternative oxidase activity during phosphate deficiency in bean roots (Phaseolus vulgaris). Physiol. Plant. 113: 185–192.

    Article  PubMed  CAS  Google Scholar 

  • Kleczkowski L.A. 1994. Inhibitors of photosynthetic enzymes/ carriers and metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 339–367.

    Article  CAS  Google Scholar 

  • Kleczkowski L.A. 1999. A phosphoglycerate to inorganic phosphate ratio is the major factor in controlling starch levels in chloroplasts via ADP-glucose pyrophosphorylase regulation. FEBS Lett. 448: 153–156.

    Article  PubMed  CAS  Google Scholar 

  • Kleczkowski L.A., Ciereszko I., Johansson H., Déjardin A. 2001. Transcriptional regulation of genes for UDP-glucose synthesis in Arabidopsis. In: Proceedings 12th International Congress on Photosynthesis. CSIRO Publishing, Melbourne, pp. S24-004: 1–4.

    Google Scholar 

  • Kleczkowski L.A., Geisler M., Ciereszko I., Johansson H. 2004. UDP-glucose pyrophosphorylase. An old protein with new tricks. Plant Physiol. 134: 912–918.

    Article  PubMed  CAS  Google Scholar 

  • Kondracka A., Rychter A.M. 1997. The role of Pi recycling processes during photosynthesis in phosphate-deficient bean plants. J. Exp. Bot. 48: 1461–1468.

    Article  CAS  Google Scholar 

  • Kozlowska-Szerenos B., Zielinski P., Maleszewski S. 2000. Involvement of glycolate metabolism in acclimation of Chlorella vulgaris cultures to low phosphate supply. Plant Physiol. Biochem. 38: 727–734.

    Article  CAS  Google Scholar 

  • Mikulska M., Bomsel J.L., Rychter A.M. 1998. The influence of phosphate deficiency on photosynthesis, respiration and adenine nucleotide pool in bean leaves. Photosynthetica 35: 79–88.

    Article  CAS  Google Scholar 

  • Moore B., Zhou L., Rolland F., Hall Q., Cheng W.-H., Liu Y.-X., Hwang I., Jones T., Sheen J. 2003. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300: 332–336.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen T.H., Krapp A., Röper-Schwarz U., Stitt M. 1998. The sugar-mediated regulation of genes encoding the small subunit of Rubisco and the regulatory subunit of ADP-glucose pyrophosphorylase is modified by phosphate and nitrogen. Plant Cell Environ. 21: 443–454.

    Article  CAS  Google Scholar 

  • Raghothama K.G. 2000. Phosphate transport and signaling. Curr. Opin. Plant Biol. 3: 182–187.

    PubMed  CAS  Google Scholar 

  • Rao M. 1997. The role of phosphorus in photosynthesis. In: Pessarakli M. (ed) Handbook of Photosynthesis. Marcel Dekker, Inc, New York, pp. 173–194.

    Google Scholar 

  • Sambrook J., Fritsch E.F., Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Siedlecka A., Ciereszko I., Mellerowicz E., Martz F., Chen J., Kleczkowski L.A. 2003. The small subunit ADP-glucose pyrophosphorylase (ApS) promoter mediates okadaic acid-sensitive uidA expression in starch synthesizing tissues and cells in Arabidopsis. Planta 217: 184–192.

    PubMed  CAS  Google Scholar 

  • Siedlecka A., Krupa Z. 2002. Simple method of Arabidopsis thaliana cultivation in liquid nutrient medium. Acta Physiol. Plant. 24: 163–166.

    Google Scholar 

  • Smeekens S. 2000. Sugar-induced signal transduction in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 49–81.

    Article  PubMed  CAS  Google Scholar 

  • Sokolov L.N., Déjardin A., Kleczkowski L.A. 1998. Sugars and light/dark exposure trigger differential regulation of ADP-glucose pyrophosphorylase genes in Arabidopsis thaliana (thale cress). Biochem. J. 336: 681–687.

    PubMed  CAS  Google Scholar 

  • Tymowska-Lalanne Z., Kreis M. 1998. Expression of the Arabidopsis thaliana invertase gene family. Planta 207: 259–265.

    Article  PubMed  CAS  Google Scholar 

  • Wang S.M., Lue W.L., Yu T.S., Long J.H., Wang C.N., Eimert K., Chen J. 1998. Characterization of ADG1, an Arabidopsis locus encoding for ADPG pyrophosphorylase small subunit, demonstrates that the presence of the small subunit is required for large subunit stability. Plant J. 13: 63–70.

    Article  PubMed  CAS  Google Scholar 

  • Wanke M., Ciereszko I., Podbielkowska M., Rychter A.M. 1998. Response to phosphate deficiency in bean (Phaseolus vulgaris L.) roots. Respiratory metabolism, sugar localization and changes in ultrastructure of bean root cells. Ann. Bot. 82: 809–819.

    Article  CAS  Google Scholar 

  • Williamson L.C., Ribrioux S.P.C.P., Fitter A.H., Leyser H.M.O. 2001. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol. 126: 875–882.

    Article  PubMed  CAS  Google Scholar 

  • Wu P., Ma L., Hou X., Wang M., Wu Y., Liu F., Deng X.W. 2003. Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol. 132: 1260–1271.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Footnotes: Article dedicated to the memory of Dr. Anna Siedlecka (1965–2004)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciereszko, I., Kleczkowski, L.A. Expression of several genes involved in sucrose/starch metabolism as affected by different strategies to induce phosphate deficiency in Arabidopsis . Acta Physiol Plant 27, 147–155 (2005). https://doi.org/10.1007/s11738-005-0018-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-005-0018-2

Key words

Navigation