Skip to main content
Log in

The modifying effect of sucrose on glutamate dehydrogenase (GDH) activity in lupine embryos treated with inhibitors of RNA and protein synthesis

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The modifying effect of sucrose on GDH activity and isoenzyme pattern in isolated embryos of lupine subjected to treatments with inhibitors of RNA synthesis (transcription inhibitors: actinomycin D and cordycepin) and protein synthesis (cycloheximide and chloramphenicol) was investigated. Sucrose starvation of embryos caused the increase of total activity of GDH(NADH-GDH and NAD-GDH) more than twice. Supply of sucrose to sucrose starved embryos caused a reduction of enzyme activity by 40 %. Electrophoretic analysis showed the presence of ca 17 isoenzymes of glutamate dehydrogenase in embryos grown for 72 h in medium with sucrose, while sucrose starvation increased the number of isoenzymes up to 22 forms. Addition of sucrose to sucrose starved embryos after 24 h of cultivation caused the inhibition of synthesis of new isoenzymes. This down-regulation by sucrose was blocked when sucrose was added together with cycloheximide, CHX, (0.025 mM). Treatment of sucrose fed and sucrose starved embryos with cycloheximide (0.020 mM) inhibited protein synthesis by 58 % and 24 %, respectively. The addition of cycloheximide (0.025 mM) to sucrose starved embryos decreased by 60 % NADH-GDH and by 30 % NAD-GDH activity and reduced the spectrum of isoenzymes. CHX treatment did not lead to a significant reduction of enzyme activity and isoenzyme pattern in sucrose fed embryos. The chloramphenicol (CMP) treatment (1 mM) stimulated the total GDH activity, 2.5 fold and 1.5 fold, in sucrose fed and sucrose starved embryos, respectively. Addition of CMP (10 mM) to the media did not affect GDH activity. Both concentrations of CMP caused no significant changes in the isoenzymatic pattern of enzyme in sucrose starved embryos, but induction of new isoenzymes was observed in sucrose fed embryos treated with CMP. In the case of using RNA synthesis inhibitors only cordycepin inhibited the total GDH activity (by ca 25 %) but neither actinomycin D or cordycepin caused any changes in isoenzyme pattern of GDH. The possible mechanism of sugar-mediated regulation of GDH activity is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GDH:

glutamate dehydrogenase

NADH-GDH:

amination activity of glutamate dehydrogenase

NAD-GDH:

deamination activity of glutamate dehydrogenase

CHX:

cyclohexmide

Act. D:

actinomycin D

CMP:

chloramphenicol

References

  • Atkin O.K., Zhang Q., Wiskich J. 2002. Effect of temperature on rates of alternative and cytochrome pathway respiration and their relationship with the redox poise of the quinone pool. Plant. Physiol. 128: 212–222.

    Article  PubMed  CAS  Google Scholar 

  • Bradford M. 1976. A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Britton K.L., Baker P.J., Rice D.W., Stillman T.J. 1992. Structural relationship between the hexameric and tetrameric family of glutamate dehydrogenase. Eur. J. Biochem. 209: 851–859.

    Article  PubMed  CAS  Google Scholar 

  • Brouquisse R., Gaudillere J.P., Raymond P. 1998. Induction of a carbon-starvation-related proteolysis in whole maize plants submitted to light/dark cycles and to extended darkness. Plant Physiol. 117: 1281–1291.

    Article  PubMed  CAS  Google Scholar 

  • Cammaerts D., Jacobs M. 1985. A study of the role of glutamate dehydrogenase in the nitrogen metabolism of Arabidopsis thaliana. Planta 163: 517–526.

    Article  CAS  Google Scholar 

  • Cheng C.L., Acedo G.N., Gristism M., Concling M.A. 1992. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc. Natl. Acad. Sci. USA, 89: 1861–1864.

    Article  PubMed  CAS  Google Scholar 

  • Chevalier C., Bourgeois E., Pradet A., Raymond P. 1995. Molecular cloning and characterization of six cDNAs expressed during glucose starvation in excised maize (Zea mays L.) root tips. Plant Mol. Biol. 28: 473–485.

    Article  PubMed  CAS  Google Scholar 

  • Chung B-C., Lee S.Y., Oh S.A., Rhew T.H. Nam, H.G., Lee C-H. 1997. The promotor activity of sen 1, a senecsence-associated gene of Arabidopsis, is repressed by sugars. J. Plant Physiol. 151: 337–345.

    Google Scholar 

  • Czosnowski J. 1974. Metabolism of excised embryos of Lupinus luteus L. An electrophoretic analysis of some dehydrogenases in cultured embryos as compared with the normal seedling axes. Acta Soc. Bot. Pol. 43: 117–127.

    CAS  Google Scholar 

  • Dieuaide M., Couee I., Pradet A., Raymond P., 1992. Increased fatty acid β-oxidation after glucose starvation in maize root tips. Plant Physiol. 99: 595–600.

    PubMed  CAS  Google Scholar 

  • Edwards D.L., Rosenberg E. & Maroney P.A. 1974. Induction of cyanide-insensitive respiration in Neurospora crassa. J. Bioch. Chem. 249: 355–3556.

    Google Scholar 

  • Ficcarelli A., Tassi F., Restivo F.M. 1999. Isolation and characterization of two cDNA clones encoding for glutamate dehydrogenase in Nicotina plumbaginifolia. Plant Cell Physiol. 40: 339–342.

    Google Scholar 

  • Fox G.G., Ratcliffe R.G., Robinson S.A., Stewart G.R. 1995. Evidence for deamination of glutamate dehydrogenase in higher plants: commentary. Can. J. Bot. 73: 1112–1115.

    CAS  Google Scholar 

  • Gancedo J.M. 1998. Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62: 334–361.

    PubMed  CAS  Google Scholar 

  • Graham A., Derby K.J., Leaver C.J. 1994. Carbon catabolite repression regulates glyoxylate cycle gene expression in cucumber. Plant Cell 6: 761–772.

    Article  PubMed  CAS  Google Scholar 

  • Heller R. 1954. Recherches sur la nutrition minerale des tissus vegetaux cultives in vitro. Ann. Sc. Nat. Biol. Veg. 14, 1–223.

    CAS  Google Scholar 

  • James F., Brouquisse R., Pradet A., Raymond P. 1993. Changes in proteolytic activities in glucose-starved maize root tips. Regulation by sugars. Plant Pysiol. Biochem. 31: 845–856.

    CAS  Google Scholar 

  • Jang J-C., Sheen J. 1997. Sugar senescing in higher plants. Trends Plant Science 2: 208–214.

    Article  Google Scholar 

  • Koch K.E. 1996. Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant. Physiol. Mol. Biol. 47: 509–540.

    Article  CAS  Google Scholar 

  • Kwinta J., Bartoszewicz K., Bielawski W. 2001. Purification and characteristics of glutamate dehydrogenase (GDH) from triticale roots. Acta Physiol. Plant. 23: 399–405.

    CAS  Google Scholar 

  • Laemmli U.K. 1970. Cleavage of structural proteins during assembly by the head of bacteriophage T4. Nature 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lauriere C., Daussant J. 1983. Identification of ammonia-dependent isoenzyme of glutamate dehydrogenase as the form induced by senescence or darkness in the first leaf of weat. Physiol. Plant. 58: 89–92.

    Article  CAS  Google Scholar 

  • Loulakakis K., Roubelakis-Angelakis K. 1990. Intercellular localization and propertis of NADH-glutamate dehydrogenase from Vitis vinifera L. Plant Physiol. 94: 109–113.

    PubMed  CAS  Google Scholar 

  • Loulakakis K., Roubelakis-Angelakis K. 1991. Plant NAD(H)-glutamate dehydrogenase consists of two subunit polypeptides and their participation in the seven isoenzymes occures in an ordered ratio. Plant Physiol. 97: 104–111.

    PubMed  CAS  Google Scholar 

  • Loulakakis K., Roubelakis-Angelakis K. 1996. The seven NAD(H)-glutamate dehydrogenase isoenzymes exhibit similar anabolic and catabolic activities. Plant Physiol. 96: 29–35.

    Article  CAS  Google Scholar 

  • Maestri E., Restivo F.M., Gulli M., Tassi I. 1991. Glutamate dehydrogenase regulation in callus cultures of Nicotiana plumbaginifolia: effect of glucose feeding and carbon source starvation of the isoezymatic pattern. Plant, Cell Environm. 14: 613–618.

    Article  CAS  Google Scholar 

  • Mans R.J., Novelli G.D. 1961. Measurment of the incorporation of radioactive amino acids into protein by a filter-paper disc methods. Arch. Biochem. Biophysis. 94: 48–53.

    Article  CAS  Google Scholar 

  • Melo-Oliveira R., Oliveira I.C., Coruzzi G. 1996. Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation. Proc. Natl. Acad. Sci USA, 14(93): 4718–4723.

    Article  Google Scholar 

  • Morkunas I., Lehmann T., Ratajczak W., Ratajczak L., Tomaszewska B. 2000. The involvemnent of glutamate dehydrogenase in the adaptation of mitochondria to oxidize glutamate in sucrose starved pea embryos. Acta Physiol. Plant. 22: 389–394.

    CAS  Google Scholar 

  • Morohashi Y., Seto T., Matsushima 1991. Appearance of alternative respiration in cucumber cotyledon mitochondria after treatment with cycloheximide. Physiol. Plant. 83: 640–646.

    Article  CAS  Google Scholar 

  • Nishimura M., Douce R. and Akazawa T. 1982. Isolation and characterization of metabolically competent mitochondria from spinach leaves protoplasts. Plant Physiol. 69: 916–920.

    PubMed  CAS  Google Scholar 

  • Nooden L. D., Guiamet J.J., John J. 1997. Senescence mechanisms. Plant Physiol. 101: 746–753

    Article  CAS  Google Scholar 

  • Pahlich E., Gerlitz C. 1980. Deviation from Michaelis-Menten behaviour of plant glutamate dehydrogenase with ammonium as variable substrate. Phytochemistry 19: 11–13.

    Article  CAS  Google Scholar 

  • Pego J. V., Kortshtee A.J., Huijser C., Smeekens S. 2000. Photosynthesis, sugar and the regulation of gene expression. J. Exp. Bot. 51: 407–416.

    Article  PubMed  CAS  Google Scholar 

  • Prata R.T.N., Williamson J.D., Conkling M.A., Pharr D.M. 1997. Sugar repression of mannitol dehydrogenase activity in celery cells. Plant Physiol. 114: 307–314.

    PubMed  CAS  Google Scholar 

  • Purcell P.C., Smith A.M., Halford N.G. 1998. Antisense expression of a sucrose non-fermenting-1-related protein kinase sequence in tubers and loss of sucrose-inducibility of sucrose synthase transcripts in leaves. Plant J. 14: 195–202.

    Article  CAS  Google Scholar 

  • Purnell M., Stewart G., Botella J. 1997. Cloning and characterization of glutamate dehydrogenase cDNA from tomato (Lycopersicon esculentum L.) Gene 186: 249–254.

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak L., Koroniak D., Mazurowa H., Ratajczak W., Prus-Głowacki W. 1986. Glutamate dehydrogenase isoforms in lupine roots and root nodules. Immunochemical studies. Physiol. Plant. 67: 685–689.

    Article  CAS  Google Scholar 

  • Ratajczak L., Ratajczak W., Koroniak D., Przybylska M., Mazurowa H. 1988. Glutamate dehydrogenase isoenzymes in yellow lupine root nodules. II. Subunit composition. Acta Physiol. Plant. 10: 49–55.

    CAS  Google Scholar 

  • Ratajczak L., Ratajczak W., Mazurowa H. 1981. The effect of different carbon and nitrogen sources on the activity of glutamine synthase and glutamate dehydrogenase in lupine embryonic axes. Physiol. Plant. 51: 277–280.

    Article  CAS  Google Scholar 

  • Ratajczak L., Prus-Głowacki W., Ratajczak W., Lehmann T. 1989. Immunochemical comparison of the glutamate dehydrogenase isoenzymes in yellow lupin root nodules. Acta Biochem. Pol. 36: 285–293.

    CAS  Google Scholar 

  • Robinson S.A., Stewart G.R. and Phillips R. 1992. Regulation of glutamate dehydrogenase activity in relation to carbon limitation and protein catabolism in carrot cell suspension cultures. Plant Physiol. 98: 1190–1195.

    PubMed  CAS  Google Scholar 

  • Rolland F., Winderickx., Thevelein J. 2001. Glucose-sensing mechanisms in eukaryotic cells. Trends Bioch. Sci. 26: 310–317.

    Article  CAS  Google Scholar 

  • Saier M. 1989. Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate:sugar phophotransferase system. Microbiol. Rev. 53: 109–120.

    PubMed  CAS  Google Scholar 

  • Sakakibara H., Fujii K., Sugiyama T. 1995. Isolation and characterization of cDNA that encodes maize glutamate dehydrogenase. Plant Cell Physiol. 36: 789–797.

    PubMed  CAS  Google Scholar 

  • Sheen J., Zhou L., Jang J. 1999. Sugars as signaling moleculs. Curr. Op. Plant Biol. 2: 410–418.

    Article  CAS  Google Scholar 

  • Smeekens S. 1998. Sugar regulation of gene expression in plants. Curr. Op. Plant. Biol. 1: 230–234.

    Article  CAS  Google Scholar 

  • Smeekens S., Rook F. 1997. Sugar sensing and sugar-mediated signal transduction in plants. Plant Physiol. 115: 7–13.

    PubMed  CAS  Google Scholar 

  • Srivastava H.S., Shing R.P. 1987. Role and regulation of L-glutamate dehydrogenase activity in higher plants. Phytochemistry 26: 597–610.

    Article  CAS  Google Scholar 

  • Tassi F., Maestri E., Restivo F. M., Marminoli N. 1992. The effects of carbon starvation on cellular metabolism and protein and RNA synthesis in Gerbera callus cultures. Plant. Sci. 83: 127–136.

    Article  CAS  Google Scholar 

  • Thomas H. 1978. Enzymes of nitrogen mobilization in detached leaves of Lolium temulentum during senescence. Planta 142: 161–169.

    Article  CAS  Google Scholar 

  • Turano F., Thakkar S.S., Fang T., Weismann J., 1997. Characterization and expression of NAD(H)-dependent glutamate dehydrogenzse genes in Arabidopsis. Plant. Physiol. 113: 1329–1341.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M., Nakayama H., Watanabe Y., Shimada N. 1992. Induction of a specific isoenzyme of glutamate dehydrogenase during isolation and the first 48 h of culture of Brassica napus leaf protoplasts. Physiol. Plant. 86: 231–235.

    Article  CAS  Google Scholar 

  • Yamaya T., Oaks A., Rhodes D., Matsumoto H. 1986. Synthesis of (15N)glutamate from (15N)H4 and (15N)glycine by mitochondria isolated from pea and corn shoots. Plant Physiol. 81: 754–757.

    Article  PubMed  CAS  Google Scholar 

  • Yu S-M. 1999. Cellular and genetic response of plants to sugar starvation. Plant Physiol. 121: 687–693.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Lehmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehmann, T., Ratajczak, L., Deckert, J. et al. The modifying effect of sucrose on glutamate dehydrogenase (GDH) activity in lupine embryos treated with inhibitors of RNA and protein synthesis. Acta Physiol Plant 25, 325–335 (2003). https://doi.org/10.1007/s11738-003-0013-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-003-0013-4

Key words

Navigation