Skip to main content
Log in

Review of recent developments in cement composites reinforced with fibers and nanomaterials

  • Review
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

The quest for high-performance construction materials is led by the development and application of new reinforcement materials for cement composites. Concrete reinforcement with fibers has a long history. Nowadays, many new fibers associated with high performance and possessing eco-environmental characteristics, such as basalt fibers and plant fibers, have received much attention from researchers. In addition, nanomaterials are considered as a core material in the modification of cement composites, specifically in the enhancement of the strength and durability of composites. This paper provides an overview of the recent research progress on cement composites reinforced with fibers and nanomaterials. The influences of fibers and nanomaterials on the fresh and hardened properties of cement composites are summarized. Moreover, future trends in the application of these fibers or of nanomaterial-reinforced cement composites are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Center for Strategic Studies Chinese Academy of Engineering. Engineering Fronts in 2019. Beijing: Higher Education Press, 2019

    Google Scholar 

  2. Yoo D Y, Banthia N. Impact resistance of fiber-reinforced concrete: A review. Cement and Concrete Composites, 2019, 104: 103389

    Article  Google Scholar 

  3. Barluenga G. Fiber matrix interaction at early ages of concrete with short fibers. Cement and Concrete Research, 2010, 40(5): 802–809

    Article  Google Scholar 

  4. Guo Z, Wan C, Xu M, Chen J. Review of basalt fiber-reinforced concrete in China: Alkali resistance of fibers and static mechanical properties of composites. Advances in Materials Science and Engineering, 2018, 2018: 1–11

    Article  Google Scholar 

  5. Goswami L, Kim K H, Deep A, Das P, Bhattacharya S S, Kumar S, Adelodun A A. Engineered nano particles: Nature, behavior, and effect on the environment. Journal of Environmental Management, 2017, 196: 297–315

    Article  Google Scholar 

  6. Norhasri M M, Hamidah M S, Fadzil A M. Applications of using nano material in concrete: A review. Construction & Building Materials, 2017, 133: 91–97

    Article  Google Scholar 

  7. Chuah S, Pan Z, Sanjayan J G, Wang C M, Duan W H. Nano reinforced cement and concrete composites and new perspective from graphene oxide. Construction & Building Materials, 2014, 73: 113–124

    Article  Google Scholar 

  8. Shah S P, Hou P, Konsta-Gdoutos M S. Nano-modification of cementitious material: Toward a stronger and durable concrete. Journal of Sustainable Cement-Based Materials, 2016, 5(1–2): 1–22

    Article  Google Scholar 

  9. Ranjbar N, Talebian S, Mehrali M, Kuenzel C, Cornelis Metselaar H S, Jumaat M Z. Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites. Composites Science and Technology, 2016, 122: 73–81

    Article  Google Scholar 

  10. Hossain K M A, Lachemi M, Sammour M, Sonebi M. Influence of polyvinyl alcohol, steel, and hybrid fibers on fresh and rheological properties of self-consolidating concrete. Journal of Materials in Civil Engineering, 2012, 24(9): 1211–1220

    Article  Google Scholar 

  11. Grzymski F, Musiał M, Trapko T. Mechanical properties of fibre reinforced concrete with recycled fibres. Construction & Building Materials, 2019, 198: 323–331

    Article  Google Scholar 

  12. Holschemacher K, Mueller T, Ribakov Y. Effect of steel fibres on mechanical properties of high-strength concrete. Materials & Design, 2010, 31(5): 2604–2615

    Article  Google Scholar 

  13. Xu Z, Hao H, Li H N. Experimental study of dynamic compressive properties of fibre reinforced concrete material with different fibres. Materials & Design, 2012, 33: 42–55

    Article  Google Scholar 

  14. Pakravan H R, Ozbakkaloglu T. Synthetic fibers for cementitious composites: A critical and in-depth review of recent advances. Construction & Building Materials, 2019, 207: 491–518

    Article  Google Scholar 

  15. Kang S T, Kim J K. The relation between fiber orientation and tensile behavior in an ultra high performance fiber reinforced cementitious composites (UHPFRCC). Cement and Concrete Research, 2011, 41(10): 1001–1014

    Article  Google Scholar 

  16. Libre N A, Shekarchi M, Mahoutian M, Soroushian P. Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice. Construction & Building Materials, 2011, 25(5): 2458–2464

    Article  Google Scholar 

  17. Koniki S, Prasad D R. Influence of hybrid fibres on strength and stress-strain behaviour of concrete under uni-axial stresses. Construction & Building Materials, 2019, 207: 238–248

    Article  Google Scholar 

  18. Abdallah S, Fan M, Cashell K A. Bond-slip behaviour of steel fibres in concrete after exposure to elevated temperatures. Construction & Building Materials, 2017, 140: 542–551

    Article  Google Scholar 

  19. Cao Q, Cheng Y, Cao M, Gao Q. Workability, strength and shrinkage of fiber reinforced expansive self-consolidating concrete. Construction & Building Materials, 2017, 131: 178–185

    Article  Google Scholar 

  20. Banthia N, Majdzadeh F, Wu J, Bindiganavile V. Fiber synergy in hybrid fiber reinforced concrete (HyFRC) in flexure and direct shear. Cement and Concrete Composites, 2014, 48: 91–97

    Article  Google Scholar 

  21. Soutsos M N, Le T T, Lampropoulos A P. Flexural performance of fibre reinforced concrete made with steel and synthetic fibres. Construction & Building Materials, 2012, 36: 704–710

    Article  Google Scholar 

  22. Li B, Xu L, Shi Y, Chi Y, Liu Q, Li C. Effects of fiber type, volume fraction and aspect ratio on the flexural and acoustic emission behaviors of steel fiber reinforced concrete. Construction & Building Materials, 2018, 181: 474–486

    Article  Google Scholar 

  23. Zhang H, Ji T, Lin X. Pullout behavior of steel fibers with different shapes from ultra-high performance concrete (UHPC) prepared with granite powder under different curing conditions. Construction & Building Materials, 2019, 211: 688–702

    Article  Google Scholar 

  24. Park S H, Kim D J, Ryu G S, Koh K T. Tensile behavior of ultra high performance hybrid fiber reinforced concrete. Cement and Concrete Composites, 2012, 34(2): 172–184

    Article  Google Scholar 

  25. Frank E, Steudle L M, Ingildeev D, Spörl J M, Buchmeiser M R. Carbon fibers: Precursor systems, processing, structure, and properties. Angewandte Chemie International Edition, 2014, 53(21): 5262–5298

    Article  Google Scholar 

  26. Sharma M, Gao S, Mäder E, Sharma H, Wei L Y, Bijwe J. Carbon fiber surfaces and composite interphases. Composites Science and Technology, 2014, 102: 35–50

    Article  Google Scholar 

  27. Qin X, Li X, Cai X. The applicability of alkaline-resistant glass fiber in cement mortar of road pavement: Corrosion mechanism and performance analysis. International Journal of Pavement Research and Technology, 2017, 10(6): 536–544

    Article  Google Scholar 

  28. Lee J S, Lee M, Lim T Y, Lee Y, Jeon D W, Hyun S K, Kim J H. Performance of alkali-resistant glass fibers modified with refused coal ore. Materials Transactions, 2017, 58(5): 705–710

    Article  Google Scholar 

  29. Çavdar A. The effects of high temperature on mechanical properties of cementitious composites reinforced with polymeric fibers. Composites. Part B, Engineering, 2013, 45(1): 78–88

    Article  Google Scholar 

  30. Conforti A, Plizzari G A, Zerbino R. Vibrated and self-compacting fibre reinforced concrete: Experimental investigation on the fibre orientation. IOP Conference Series. Materials Science and Engineering, 2017, 246: 012019

    Google Scholar 

  31. Liu J, Jia Y, Wang J. Experimental study on mechanical and durability properties of glass and polypropylene fiber reinforced concrete. Fibers and Polymers, 2019, 20(9): 1900–1908

    Article  Google Scholar 

  32. Jiang C, Fan K, Wu F, Chen D. Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Materials & Design, 2014, 58: 187–193

    Article  Google Scholar 

  33. Cui Y, Chen Y, Cen G, Peng G. Comparative study on the effect of organic and inorganic fiber on the anti-wheel impact performance of airport pavement concrete under freeze-thaw environment. Construction & Building Materials, 2019, 211: 284–297

    Article  Google Scholar 

  34. Yu K Q, Yu J T, Dai J G, Lu Z D, Shah S P. Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers. Construction & Building Materials, 2018, 158: 217–227

    Article  Google Scholar 

  35. Yu K Q, Zhu W J, Ding Y, Lu Z D, Yu J T, Xiao J Z. Microstructural and mechanical properties of ultra-high performance engineered cementitious composites (UHP-ECC) incorporation of recycled fine powder (RFP). Cement and Concrete Research, 2019, 124: 105813

    Article  Google Scholar 

  36. Al-Hadithi A I, Noaman A T, Mosleh W K. Mechanical properties and impact behavior of PET fiber reinforced self-compacting concrete (SCC). Composite Structures, 2019, 224: 111021

    Article  Google Scholar 

  37. Marthong C, Sarma D K. Influence of PET fiber geometry on the mechanical properties of concrete: An experimental investigation. European Journal of Environmental and Civil Engineering, 2016, 20(7): 771–784

    Article  Google Scholar 

  38. Pacheco-Torgal F, Jalali S. Cementitious building materials reinforced with vegetable fibres: A review. Construction & Building Materials, 2011, 25(2): 575–581

    Article  Google Scholar 

  39. Thong C C, Teo D C L, Ng C K. Application of polyvinyl alcohol (PVA) in cement-based composite materials: A review of its engineering properties and microstructure behavior. Construction & Building Materials, 2016, 107: 172–180

    Article  Google Scholar 

  40. Ahmad S, Umar A. Rheological and mechanical properties of self-compacting concrete with glass and polyvinyl alcohol fibres. Journal of Building Engineering, 2018, 17: 65–74

    Article  Google Scholar 

  41. Bolooki Poorsaheli H, Behravan A, Tabatabaei Aghda S T, Gholami A. A study on the durability parameters of concrete structures reinforced with synthetic fibers in high chloride concentrated shorelines. Construction & Building Materials, 2019, 200: 578–585

    Article  Google Scholar 

  42. Lipatov Y V, Gutnikov S I, Manylov M S, Zhukovskaya E S, Lazoryak B I. High alkali-resistant basalt fiber for reinforcing concrete. Materials & Design, 2015, 73: 60–66

    Article  Google Scholar 

  43. Raj S, Kumar V R, Kumar B H B, Iyer N R. Basalt: Structural insight as a construction material. Sadhana, 2017, 42(1): 75–84

    Article  Google Scholar 

  44. Larisa U, Solbon L, Sergei B. Fiber-reinforced concrete with mineral Fibers and nanosilica. Procedia Engineering, 2017, 195: 147–154

    Article  Google Scholar 

  45. Onuaguluchi O, Banthia N. Plant-based natural fibre reinforced cement composites: A review. Cement and Concrete Composites, 2016, 68: 96–108

    Article  Google Scholar 

  46. Cai M, Takagi H, Nakagaito A N, Li Y, Waterhouse G I N. Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composites. Part A, Applied Science and Manufacturing, 2016, 90: 589–597

    Article  Google Scholar 

  47. Li Y, Chen C, Xu J, Zhang Z, Yuan B, Huang X. Improved mechanical properties of carbon nanotubes-coated flax fiber reinforced composites. Journal of Materials Science, 2015, 50(3): 1117–1128

    Article  Google Scholar 

  48. Shen X, Jia J, Chen C, Li Y, Kim J K. Enhancement of mechanical properties of natural fiber composites via carbon nanotube addition. Journal of Materials Science, 2014, 49(8): 3225–3233

    Article  Google Scholar 

  49. Othuman Mydin M A, Rozlan N A, Ganesan S. Experimental study on the mechanical properties of coconut fibre reinforced lightweight foamed concrete. Journal of Materials and Environmental Science, 2015, 6(2): 407–411

    Google Scholar 

  50. Amin M S, El-Gamal S M A, Hashem F S. Fire resistance and mechanical properties of carbon nanotubes-clay bricks wastes (Homra) composites cement. Construction & Building Materials, 2015, 98: 237–249

    Article  Google Scholar 

  51. Heikal M, Ismail M N, Ibrahim N S. Physico-mechanical, microstructure characteristics and fire resistance of cement pastes containing Al2O3 nano-particles. Construction & Building Materials, 2015, 91: 232–242

    Article  Google Scholar 

  52. Khotbehsara M M, Mohseni E, Yazdi M A, Sarker P, Ranjbar M M. Effect of nano-CuO and fly ash on the properties of self-compacting mortar. Construction & Building Materials, 2015, 94: 758–766

    Article  Google Scholar 

  53. Sharkawi A M, Abd-Elaty M A, Khalifa O H. Synergistic influence of micro-nano silica mixture on durability performance of cementious materials. Construction & Building Materials, 2018, 164: 579–588

    Article  Google Scholar 

  54. Panda B, Ruan S, Unluer C, Tan M J. Improving the 3D printability of high volume fly ash mixtures via the use of nano attapulgite clay. Composites. Part B, Engineering, 2019, 165: 75–83

    Article  Google Scholar 

  55. Murugan M, Santhanam M, Sen Gupta S, Pradeep T, Shah S P. Influence of 2D rGO nanosheets on the properties of OPC paste. Cement and Concrete Composites, 2016, 70: 48–59

    Article  Google Scholar 

  56. Wang H, Gao X, Wang R. The influence of rheological parameters of cement paste on the dispersion of carbon nanofibers and self-sensing performance. Construction & Building Materials, 2017, 134: 673–683

    Article  Google Scholar 

  57. Nazari A, Riahi S. Computer-aided design of the effects of Fe2O3 nanoparticles on split tensile strength and water permeability of high strength concrete. Materials & Design, 2011, 32(7): 3966–3979

    Article  MATH  Google Scholar 

  58. Lee H S, Balasubramanian B, Gopalakrishna G V T, Kwon S J, Karthick S P, Saraswathy V. Durability performance of CNT and nanosilica admixed cement mortar. Construction & Building Materials, 2018, 159: 463–472

    Article  Google Scholar 

  59. Ying J, Zhou B, Xiao J. Pore structure and chloride diffusivity of recycled aggregate concrete with nano-SiO2 and nano-TiO2. Construction & Building Materials, 2017, 150: 49–55

    Article  Google Scholar 

  60. Gdoutos E E, Konsta-Gdoutos M S, Danoglidis P A. Portland cement mortar nanocomposites at low carbon nanotube and carbon nanofiber content: A fracture mechanics experimental study. Cement and Concrete Composites, 2016, 70: 110–118

    Article  Google Scholar 

  61. Alavi Nia A, Hedayatian M, Nili M, Sabet V A. An experimental and numerical study on how steel and polypropylene fibers affect the impact resistance in fiber-reinforced concrete. International Journal of Impact Engineering, 2012, 46: 62–73

    Article  Google Scholar 

  62. Xiao J, Wang W, Zhou Z, Tawana M M. Punching shear behavior of recycled aggregate concrete slabs with and without steel fibres. Frontiers of Structural and Civil Engineering, 2019, 13(3): 725–740

    Article  Google Scholar 

  63. Kakooei S, Akil H M, Jamshidi M, Rouhi J. The effects of polypropylene fibers on the properties of reinforced concrete structures. Construction & Building Materials, 2012, 27(1): 73–77

    Article  Google Scholar 

  64. Kazmi S M S, Munir M J, Wu Y F, Patnaikuni I, Zhou Y, Xing F. Axial stress-strain behavior of macro-synthetic fiber reinforced recycled aggregate concrete. Cement and Concrete Composites, 2019, 97: 341–356

    Article  Google Scholar 

  65. Ali M, Liu A, Sou H, Chouw N. Mechanical and dynamic properties of coconut fibre reinforced concrete. Construction & Building Materials, 2012, 30: 814–825

    Article  Google Scholar 

  66. Cengiz A, Kaya M, Pekel Bayramgil N. Flexural stress enhancement of concrete by incorporation of algal cellulose nanofibers. Construction & Building Materials, 2017, 149: 289–295

    Article  Google Scholar 

  67. Wu Z, Khayat K H, Shi C. How do fiber shape and matrix composition affect fiber pullout behavior and flexural properties of UHPC? Cement and Concrete Composites, 2018, 90: 193–201

    Article  Google Scholar 

  68. Yoo D Y, Lee J H, Yoon Y S. Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites. Composite Structures, 2013, 106: 742–753

    Article  Google Scholar 

  69. Kim D J, Park S H, Ryu G S, Koh K T. Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers. Construction & Building Materials, 2011, 25(11): 4144–4155

    Article  Google Scholar 

  70. Alshaghel A, Parveen S, Rana S, Fangueiro R. Effect of multiscale reinforcement on the mechanical properties and microstructure of microcrystalline cellulose-carbon nanotube reinforced cementitious composites. Composites. Part B, Engineering, 2018, 149: 122–134

    Article  Google Scholar 

  71. Barnett S J, Lataste J F, Parry T, Millard S G, Soutsos M N. Assessment of fibre orientation in ultra high performance fibre reinforced concrete and its effect on flexural strength. Materials and Structures, 2010, 43(7): 1009–1023

    Article  Google Scholar 

  72. Kang S T, Kim J K. Investigation on the flexural behavior of UHPCC considering the effect of fiber orientation distribution. Construction & Building Materials, 2012, 28(1): 57–65

    Article  Google Scholar 

  73. Kang S T, Lee B Y, Kim J K, Kim Y Y. The effect of fibre distribution characteristics on the flexural strength of steel fibre-reinforced ultra high strength concrete. Construction & Building Materials, 2011, 25(5): 2450–2457

    Article  Google Scholar 

  74. Li F, Cui Y, Cao C, Wu P. Experimental study of the tensile and flexural mechanical properties of directionally distributed steel fibre-reinforced concrete. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233: 1721–1732

    Article  Google Scholar 

  75. Aydın A C, Nasl V J, Kotan T. The synergic influence of nanosilica and carbon nano tube on self-compacting concrete. Journal of Building Engineering, 2018, 20: 467–475

    Article  Google Scholar 

  76. Konsta-Gdoutos M S, Danoglidis P A, Shah S P. High modulus concrete: Effects of low carbon nanotube and nanofiber additions. Theoretical and Applied Fracture Mechanics, 2019, 103: 102295

    Article  Google Scholar 

  77. Stefanidou M, Papayianni I. Influence of nano-SiO2 on the Portland cement pastes. Composites. Part B, Engineering, 2012, 43(6): 2706–2710

    Article  Google Scholar 

  78. Zapata L E, Portela G, Suárez O M, Carrasquillo O. Rheological performance and compressive strength of superplasticized cementitious mixtures with micro/nano-SiO2 additions. Construction & Building Materials, 2013, 41: 708–716

    Article  Google Scholar 

  79. Shaikh F U A, Supit S W M, Sarker P K. A study on the effect of nano silica on compressive strength of high volume fly ash mortars and concretes. Materials & Design, 2014, 60: 433–442

    Article  Google Scholar 

  80. Heikal M, Ali A I, Ismail M N, Ibrahim S A N S. Behavior of composite cement pastes containing silica nano-particles at elevated temperature. Construction & Building Materials, 2014, 70: 339–350

    Article  Google Scholar 

  81. Madandoust R, Mohseni E, Mousavi S Y, Namnevis M. An experimental investigation on the durability of self-compacting mortar containing nano-SiO2, nano-Fe2O3 and nano-CuO. Construction & Building Materials, 2015, 86: 44–50

    Article  Google Scholar 

  82. Mohsen M O, Taha R, Abu Taqa A, Shaat A. Optimum carbon nanotubes’ content for improving flexural and compressive strength of cement paste. Construction & Building Materials, 2017, 150: 395–403

    Article  Google Scholar 

  83. Cui X, Han B, Zheng Q, Yu X, Dong S, Zhang L, Ou J. Mechanical properties and reinforcing mechanisms of cementitious composites with different types of multiwalled carbon nanotubes. Composites. Part A, Applied Science and Manufacturing, 2017, 103: 131–147

    Article  Google Scholar 

  84. Gdoutos E E, Konsta-Gdoutos M S, Danoglidis P A, Shah S P. Advanced cement based nanocomposites reinforced with MWCNTs and CNFs. Frontiers of Structural and Civil Engineering, 2016, 10(2): 142–149

    Article  Google Scholar 

  85. Asprone D, Menna C, Bos F P, Salet T A M, Mata-Falcön J, Kaufmann W. Rethinking reinforcement for digital fabrication with concrete. Cement and Concrete Research, 2018, 112: 111–121

    Article  Google Scholar 

  86. Wu X, Dai L. Carbon nano-tubes in improving the mechanical property of cement-based composite materials. Frattura ed Integrità Strutturale, 2017, 11: 388–395

    Article  Google Scholar 

  87. Behfarnia K, Salemi N. The effects of nano-silica and nano-alumina on frost resistance of normal concrete. Construction & Building Materials, 2013, 48: 580–584

    Article  Google Scholar 

  88. Oltulu M, Şahin R. Single and combined effects of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strength and capillary permeability of cement mortar containing silica fume. Materials Science and Engineering A, 2011, 528(22–23): 7012–7019

    Article  Google Scholar 

  89. Mirgozar Langaroudi M A, Mohammadi Y. Effect of nano-clay on workability, mechanical, and durability properties of self-consolidating concrete containing mineral admixtures. Construction & Building Materials, 2018, 191: 619–634

    Article  Google Scholar 

  90. Li H, Xiao H, Yuan J, Ou J. Microstructure of cement mortar with nano-particles. Composites. Part B, Engineering, 2004, 35(2): 185–189

    Article  Google Scholar 

  91. Abd El Aleem S, Heikal M, Morsi W M. Hydration characteristic, thermal expansion and microstructure of cement containing nano-silica. Construction & Building Materials, 2014, 59: 151–160

    Article  Google Scholar 

  92. Ghafari E, Costa H, Júlio E, Portugal A, Durães L. The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete. Materials & Design, 2014, 59: 1–9

    Article  Google Scholar 

  93. Haruehansapong S, Pulngern T, Chucheepsakul S. Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-SiO2. Construction & Building Materials, 2014, 50: 471–477

    Article  Google Scholar 

  94. Kumar R, Singh S, Singh L P. Studies on enhanced thermally stable high strength concrete incorporating silica nanoparticles. Construction & Building Materials, 2017, 153: 506–513

    Article  Google Scholar 

  95. Li L G, Huang Z H, Zhu J, Kwan A K H, Chen H Y. Synergistic effects of micro-silica and nano-silica on strength and microstructure of mortar. Construction & Building Materials, 2017, 140: 229–238

    Article  Google Scholar 

  96. Mohseni E, Miyandehi B M, Yang J, Yazdi M A. Single and combined effects of nano-SiO2, nano-Al2O3 and nano-TiO2 on the mechanical, rheological and durability properties of self-compacting mortar containing fly ash. Construction & Building Materials, 2015, 84: 331–340

    Article  Google Scholar 

  97. Senff L, Hotza D, Lucas S, Ferreira V M, Labrincha J A. Effect of nano-SiO2 and nano-TiO2 addition on the rheological behavior and the hardened properties of cement mortars. Materials Science and Engineering A, 2012, 532: 354–361

    Article  Google Scholar 

  98. Nazari A, Riahi S. TiO2 nanoparticles’ effects on properties of concrete using ground granulated blast furnace slag as binder. Science China. Technological Sciences, 2011, 54(11): 3109–3118

    Article  Google Scholar 

  99. Shannag M J, Brincker R, Hansen W. Pullout behavior of steel fibers from cement-based composites. Cement and Concrete Research, 1997, 27(6): 925–936

    Article  Google Scholar 

  100. Scheffler C, Gao S L, Plonka R, Mäder E, Hempel S, Butler M, Mechtcherine V. Interphase modification of alkali-resistant glass fibres and carbon fibres for textile reinforced concrete I: Fibre properties and durability. Composites Science and Technology, 2009, 69(3–4): 531–538

    Article  Google Scholar 

  101. Yu R, Spiesz P, Brouwers H J H. Mix design and properties assessment of ultra-high performance fibre reinforced concrete (UHPFRC). Cement and Concrete Research, 2014, 56: 29–39

    Article  Google Scholar 

  102. Abdallah S, Fan M, Rees D W A. Bonding mechanisms and strength of steel fiber-reinforced cementitious composites: Overview. Journal of Materials in Civil Engineering, 2018, 30(3): 04018001

    Article  Google Scholar 

  103. Rashad A M. Effects of ZnO2, ZrO2, Cu2O3, CuO, CaCO3, SF, FA, cement and geothermal silica waste nanoparticles on properties of cementitious materials—A short guide for civil engineer. Construction & Building Materials, 2013, 48: 1120–1133

    Article  Google Scholar 

  104. Mendoza Reales O A, Dias Toledo Filho R. A review on the chemical, mechanical and microstructural characterization of carbon nanotubes-cement based composites. Construction & Building Materials, 2017, 154: 697–710

    Article  Google Scholar 

  105. Azeem M, Azhar Saleem M. Hydration model for the OPC-CNT mixture: Theory and experiment. Construction & Building Materials, 2020, 264: 120691

    Article  Google Scholar 

  106. Tafesse M, Kim H K. The role of carbon nanotube on hydration kinetics and shrinkage of cement composite. Composites. Part B, Engineering, 2019, 169: 55–64

    Article  Google Scholar 

  107. Nadiger A, Madhavan M K. Influence of mineral admixtures and fibers on workability and mechanical properties of reactive powder concrete. Journal of Materials in Civil Engineering, 2019, 31(2): 04018394

    Article  Google Scholar 

  108. Li L G, Chu S H, Zeng K L, Zhu J, Kwan A K H. Roles of water film thickness and fibre factor in workability of polypropylene fibre reinforced mortar. Cement & Concrete Composites, 2018, 93:196–204

    Article  Google Scholar 

  109. Bhogayata A C, Arora N K. Fresh and strength properties of concrete reinforced with metalized plastic waste fibers. Construction & Building Materials, 2017, 146: 455–463

    Article  Google Scholar 

  110. Zabihi N, Hulusi Ozkul M. The fresh properties of nano silica incorporating polymer-modified cement pastes. Construction & Building Materials, 2018, 168: 570–579

    Article  Google Scholar 

  111. Shaikh F U A, Supit S W M. Effects of superplasticizer types and mixing methods of nanoparticles on compressive strengths of cement pastes. Journal of Materials in Civil Engineering, 2016, 28(2): 06015008

    Article  Google Scholar 

  112. Jiang S, Shan B, Ouyang J, Zhang W, Yu X, Li P, Han B. Rheological properties of cementitious composites with nano/fiber fillers. Construction & Building Materials, 2018, 158: 786–800

    Article  Google Scholar 

  113. Mo K H, Goh S H, Alengaram U J, Visintin P, Jumaat M Z. Mechanical, toughness, bond and durability-related properties of lightweight concrete reinforced with steel fibres. Materials and Structures, 2017, 50(1): 1–14

    Article  Google Scholar 

  114. Afroughsabet V, Biolzi L, Monteiro P J M. The effect of steel and polypropylene fibers on the chloride diffusivity and drying shrinkage of high-strength concrete. Composites. Part B, Engineering, 2018, 139: 84–96

    Article  Google Scholar 

  115. Zhang P, Li Q, Chen Y, Shi Y, Ling Y F. Durability of steel fiber-reinforced concrete containing SiO2 nano-particles. Materials (Basel), 2019, 12(13): 2184

    Article  Google Scholar 

  116. Algin Z, Gerginci S. Freeze-thaw resistance and water permeability properties of roller compacted concrete produced with macro synthetic fibre. Construction & Building Materials, 2020, 234: 117382

    Article  Google Scholar 

  117. Zhang P, Li Q, Wang J, Shi Y, Ling Y F. Effect of PVA fiber on durability of cementitious composite containing nano-SiO2. Nanotechnology Reviews, 2019, 8(1): 116–127

    Article  Google Scholar 

  118. Afroz M, Patnaikuni I, Venkatesan S. Chemical durability and performance of modified basalt fiber in concrete medium. Construction & Building Materials, 2017, 154: 191–203

    Article  Google Scholar 

  119. Ma L. Experimental study on corrosion resistance of carbon fiber reinforced concrete for sea crossing bridge. Journal of Coastal Research, 2019, 83(sp1): 423–428

    Article  Google Scholar 

  120. Zhao K, Xue S, Zhang P, Tian Y, Li P. Application of natural plant fibers in cement-based composites and the influence on mechanical properties and mass transport. Materials (Basel), 2019, 12(21): 3498

    Article  Google Scholar 

  121. Sekar A, Kandasamy G. Study on durability properties of coconut shell concrete with coconut fiber. Buildings, 2019, 9(5): 107

    Article  Google Scholar 

  122. Tolêdo Filho R D, Scrivener K, England G L, Ghavami K. Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites. Cement and Concrete Composites, 2000, 22(2): 127–143

    Article  Google Scholar 

  123. Roma L C Jr, Martello L S, Savastano H Jr. Evaluation of mechanical, physical and thermal performance of cement-based tiles reinforced with vegetable fibers. Construction & Building Materials, 2008, 22(4): 668–674

    Article  Google Scholar 

  124. Mohr B J, Nanko H, Kurtis K E. Durability of kraft pulp fiber-cement composites to wet/dry cycling. Cement and Concrete Composites, 2005, 27(4): 435–448

    Article  Google Scholar 

  125. Meddah M S, Praveenkumar T R, Vijayalakshmi M M, Manigandan S, Arunachalam R. Mechanical and microstructural characterization of rice husk ash and Al2O3 nanoparticles modified cement concrete. Construction & Building Materials, 2020, 255: 119358

    Article  Google Scholar 

  126. Praveenkumar T R, Vijayalakshmi M M, Meddah M S. Strengths and durability performances of blended cement concrete with TiO2 nanoparticles and rice husk ash. Construction and Building Materials, 2019, 217: 343–351

    Article  Google Scholar 

  127. Fan Y, Zhang S, Wang Q, Shah S P. The effects of nano-calcined kaolinite clay on cement mortar exposed to acid deposits. Construction & Building Materials, 2016, 102: 486–495

    Article  Google Scholar 

  128. Li Y, Tan K H, Yang E H. Synergistic effects of hybrid polypropylene and steel fibers on explosive spalling prevention of ultra-high performance concrete at elevated temperature. Cement and Concrete Composites, 2019, 96: 174–181

    Article  Google Scholar 

  129. Maluk C, Bisby L, Terrasi G P. Effects of polypropylene fibre type and dose on the propensity for heat-induced concrete spalling. Engineering Structures, 2017, 141: 584–595

    Article  Google Scholar 

  130. Rudnik E, Drzymała T. Thermal behavior of polypropylene fiber-reinforced concrete at elevated temperatures. Journal of Thermal Analysis and Calorimetry, 2018, 131(2): 1005–1015

    Article  Google Scholar 

  131. Mijowska E, Horszczaruk E, Sikora P, Cendrowski K. The effect of nanomaterials on thermal resistance of cement-based composites exposed to elevated temperature. Materials Today: Proceedings, 2018, 5: 15968–15975

    Google Scholar 

  132. Farzadnia N, Abang Ali A A, Demirboga R, Anwar M P. Characterization of high strength mortars with nano Titania at elevated temperatures. Construction & Building Materials, 2013, 43: 469–479

    Article  Google Scholar 

  133. Guo H, Tao J, Chen Y, Li D, Jia B, Zhai Y. Effect of steel and polypropylene fibers on the quasi-static and dynamic splitting tensile properties of high-strength concrete. Construction & Building Materials, 2019, 224: 504–514

    Article  Google Scholar 

  134. Ali B, Ahmed H, Ali Qureshi L, Kurda R, Hafez H, Mohammed H, Raza A. Enhancing the hardened properties of recycled concrete (RC) through synergistic incorporation of fiber reinforcement and silica fume. Materials (Basel), 2020, 13(18): 4112

    Article  Google Scholar 

  135. Pi Z, Xiao H, Liu R, Liu M, Li H. Effects of brass coating and nano-SiO2 coating on steel fiber-matrix interfacial properties of cement-based composite. Composites. Part B, Engineering, 2020, 189: 107904

    Article  Google Scholar 

  136. Corinaldesi V, Nardinocchi A, Donnini J. The influence of expansive agent on the performance of fibre reinforced cement-based composites. Construction & Building Materials, 2015, 91: 171–179

    Article  Google Scholar 

  137. Li V C, Stang H. Interface property characterization and strengthening mechanisms in fiber reinforced cement based composites. Advanced Cement Based Materials, 1997, 6(1): 1–20

    Article  Google Scholar 

  138. He Q, Liu C, Yu X. Improving steel fiber reinforced concrete pull-out strength with nanoscale iron oxide coating. Construction & Building Materials, 2015, 79: 311–317

    Article  Google Scholar 

  139. Pi Z, Xiao H, Du J, Liu M, Li H. Interfacial microstructure and bond strength of nano-SiO2-coated steel fibers in cement matrix. Cement and Concrete Composites, 2019, 103: 1–10

    Article  Google Scholar 

  140. Li Z, Wang L, Wang X. Flexural characteristics of coir fiber reinforced cementitious composites. Fibers and Polymers, 2006, 7(3): 286–294

    Article  Google Scholar 

  141. Ferreira S R, Lima P R L, Silva F A, Toledo Filho R D. Effect of sisal fiber hornification on the fiber-matrix bonding characteristics and bending behavior of cement based composites. Key Engineering Materials, 2014, 600: 421–432

    Article  Google Scholar 

  142. Claramunt J, Ardanuy M, García-Hortal J A, Filho R D T. The hornification of vegetable fibers to improve the durability of cement mortar composites. Cement and Concrete Composites, 2011, 33(5): 586–595

    Article  Google Scholar 

  143. Weng Y, Li M, Liu Z, Lao W, Lu B, Zhang D, Tan M J. Printability and fire performance of a developed 3D printable fibre reinforced cementitious composites under elevated temperatures. Virtual and Physical Prototyping, 2019, 14(3): 284–292

    Article  Google Scholar 

  144. Mechtcherine V, Michel A, Liebscher M, Schneider K, Großmann C. New carbon fiber reinforcement for digital, automated concrete construction. Concrete and Steel Concrete Construction, 2019, 114(12): 947–955 (in German)

    Google Scholar 

  145. Ding T, Xiao J, Zou S, Zhou X. Anisotropic behavior in bending of 3D printed concrete reinforced with fibers. Composite Structures, 2020, 254: 112808

    Article  Google Scholar 

  146. Kruger J, Zeranka S, van Zijl G. An ab initio approach for thixotropy characterisation of (nanoparticle-infused) 3D printable concrete. Construction & Building Materials, 2019, 224: 372–386

    Article  Google Scholar 

  147. Han B, Sun S, Ding S, Zhang L, Yu X, Ou J. Review of nanocarbon-engineered multifunctional cementitious composites. Composites. Part A, Applied Science and Manufacturing, 2015, 70: 69–81

    Article  Google Scholar 

  148. Sun S, Yu X, Han B, Ou J. In situ growth of carbon nanotubes/carbon nanofibers on cement/mineral admixture particles: A review. Construction & Building Materials, 2013, 49: 835–840

    Article  Google Scholar 

  149. Amran M, Fediuk R, Vatin N, Huei Lee Y, Murali G, Ozbakkaloglu T, Klyuev S, Alabduljabber H. Fibre-reinforced foamed concretes: A review. Materials (Basel), 2020, 13(19): 4323

    Article  Google Scholar 

  150. Fediuk R. High-strength fibrous concrete of Russian Far East natural materials. IOP Conference Series. Materials Science and Engineering, 2016, 116: 012020

    Google Scholar 

  151. Mahzabin M S, Hock L J, Hossain M S, Kang L S. The influence of addition of treated kenaf fibre in the production and properties of fibre reinforced foamed composite. Construction & Building Materials, 2018, 178: 518–528

    Article  Google Scholar 

  152. Dehghanpour H, Yilmaz K, Afshari F, Ipek M. Electrically conductive concrete: A laboratory-based investigation and numerical analysis approach. Construction & Building Materials, 2020, 260: 119948

    Article  Google Scholar 

  153. Shukla P, Bhatia V, Gaur V, Bhardwaj N, Jain V K. Multiwalled carbon nanotubes reinforced cement composite based room temperature sensor for smoke detection. Sensors and Transducers, 2012, 12(11): 48–58

    Google Scholar 

  154. Singh A P, Gupta B K, Mishra M, Govind, Chandra A, Mathur R B, Dhawan S K. Multiwalled carbon nanotube/cement composites with exceptional electromagnetic interference shielding properties. Carbon, 2013, 56: 86–96

    Article  Google Scholar 

  155. Li H, Xiao H, Ou J. A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cement and Concrete Research, 2004, 34(3): 435–438

    Article  Google Scholar 

  156. Luo J, Duan Z, Xian G, Li Q, Zhao T. Damping performances of carbon nanotube reinforced cement composite. Mechanics of Advanced Materials and Structures, 2015, 22(3): 224–232

    Article  Google Scholar 

  157. Chen J, Poon C S. Photocatalytic construction and building materials: From fundamentals to applications. Building and Environment, 2009, 44(9): 1899–1906

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the National Science Fund for Distinguished Young Scholars of China (Nos. 51325802 and 11625210) is highly acknowledged. The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Han, N., Li, Y. et al. Review of recent developments in cement composites reinforced with fibers and nanomaterials. Front. Struct. Civ. Eng. 15, 1–19 (2021). https://doi.org/10.1007/s11709-021-0723-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-021-0723-y

Keywords

Navigation