Skip to main content
Log in

Nanodiamonds as nanomaterial for biomedical field

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Recent advances in nanotechnology have attracted significant attention to nanodiamonds (NDs) in both industrial and research areas thanks to their remarkable intrinsic properties: large specific area, poor cytotoxicity, chemical resistance, magnetic and optical properties, ease of large-scale production, and surface reactivity make them suitable for numerous applications, including electronics, optics, sensors, polishing materials, and more recently, biological purposes. Growing interest in diamond platforms for bioimaging and chemotherapy is observed. Given the outstanding features of these particles and their ease of tuning, current and future applications in medicine have the potential to display innovative imaging applications and to be used as tools for monitoring and tracking drug delivery in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tsakalakos T, Ovid’ko I A, Vasudevan A K, eds. Nanostructures: Synthesis, Functional Properties and Applications. Springer Netherlands, 2003

    Google Scholar 

  2. Bae K H, Chung H J, Park T G. Nanomaterials for cancer therapy and imaging. Molecules and Cells, 2011, 31(4): 295–302

    Article  CAS  Google Scholar 

  3. Jeevanandam J, Barhoum A, Chan Y S, et al. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 2018, 9: 1050–1074

    Article  CAS  Google Scholar 

  4. Afandi A, Howkins A, Boyd IW, et al. Nanodiamonds for device applications: An investigation of the properties of boron-doped detonation nanodiamonds. Scientific Reports, 2018, 8(1): 3270–3280

    Article  CAS  Google Scholar 

  5. Yang N, ed. Novel Aspects of Diamond: From Growth to Applications. 2nd ed. Cham, Switzerland: Springer Nature Switzerland AG, 2019

    Google Scholar 

  6. Turner S, Lebedev O I, Shenderova O, et al. Determination of size, morphology, and nitrogen impurity location in treated detonation nanodiamond by transmission electron microscopy. Advanced Functional Materials, 2009, 19(13): 2116–2124

    Article  CAS  Google Scholar 

  7. Ho D, ed. Nanodiamonds: Applications in Biology and Nanoscale Medicine. Springer US, 2010

    Google Scholar 

  8. Devasena T. Therapeutic and Diagnostic Nanomaterials. Springer Singapore, 2017

    Book  Google Scholar 

  9. Donnet C, Erdemir A, eds. Tribology of Diamond-like Carbon Films: Fundamentals and Applications. Springer US, 2008

    Google Scholar 

  10. Ashfold M N R, Goss J P, Green B L, et al. Nitrogen in diamond. Chemical Reviews, 2020, 120(12): 5745–5794

    Article  CAS  Google Scholar 

  11. Bogatyreva G P, Marinich M A, Ishchenko E V, et al. Application of modified nanodiamonds as catalysts of heterogeneous and electrochemical catalyses. Physics of the Solid State, 2004, 46(4): 738–741

    Article  CAS  Google Scholar 

  12. Lai H, Stenzel M H, Xiao P. Surface engineering and applications of nanodiamonds in cancer treatment and imaging. International Materials Reviews, 2020, 65(4): 189–225

    Article  CAS  Google Scholar 

  13. Eivazzadeh-Keihan R, Maleki A, de la Guardia M, et al. Carbon based nanomaterials for tissue engineering of bone: building new bone on small black scaffolds: A review. Journal of Advanced Research, 2019, 18: 185–201

    Article  CAS  Google Scholar 

  14. Grausova L, Bacakova L, Kromka A, et al. Nanodiamond as promising material for bone tissue engineering. Journal of Nanoscience and Nanotechnology, 2009, 9(6): 3524–3534

    Article  CAS  Google Scholar 

  15. Chauhan S, Jain N, Nagaich U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in vivo study and patents. Journal of Pharmaceutical Analysis, 2020, 10(1): 1–12

    Article  Google Scholar 

  16. Balek L, Buchtova M, Kunova Bosakova M, et al. Nanodiamonds as “artificial proteins”: Regulation of a cell signalling system using low nanomolar solutions of inorganic nanocrystals. Biomaterials, 2018, 176: 106–121

    Article  CAS  Google Scholar 

  17. Liu Y Y, Chang B M, Chang H C. Nanodiamond-enabled biomedical imaging. Nanomedicine, 2020, 15(16): 1599–1616

    Article  CAS  Google Scholar 

  18. Terada D, Genjo T, Segawa T F, et al. Nanodiamonds for bioapplications — Specific targeting strategies. Biochimica et Biophysica Acta: General Subjects, 2020, 1864(2): 129354

    Article  CAS  Google Scholar 

  19. Panich A M, Sergeev N A, Shames A I, et al. Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds. Journal of Physics: Condensed Matter, 2015, 27(7): 072203

    CAS  Google Scholar 

  20. Gruen D M, Shenderova O A, Vul A, eds. Synthesis, Properties and Applications of Ultrananocrystalline Diamond. Springer, 2005, 192: 241–252

  21. Tamburri E, Orlanducci S, Reina G, et al. Nanodiamonds: The ways forward. In: Rossi M, Dini L, Passeri D, et al., eds. Nanoforum 2014, 2015, 1667: 020001

  22. Khachatryan A Kh, Aloyan S G, May P W, et al. Graphite-to-diamond transformation induced by ultrasound cavitation. Diamond and Related Materials, 2008, 17(6): 931–936

    Article  CAS  Google Scholar 

  23. Butler J E, Sumant A V. The CVD of nanodiamond materials. Chemical Vapor Deposition, 2008, 14(7–8): 145–160

    Article  CAS  Google Scholar 

  24. Arnault J C, ed. Nanodiamonds: Advanced Material Analysis, Properties and Applications. Elsevier, 2017

  25. Barnard A S. Stability of diamond at the nanoscale. In: Shenderova O A, Gruen D M, eds. Ultananocrystalline Diamond. 2nd ed. Elsevier, 2012, 3–52

  26. Dolmatov V Y. Detonation nanodiamonds: Synthesis, structure, properties and applications. Uspekhi Khimii, 2007, 76(4): 375–397

    Google Scholar 

  27. Osswald S, Yushin G, Mochalin V, et al. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. Journal of the American Chemical Society, 2006, 128(35): 11635–11642

    Article  CAS  Google Scholar 

  28. Mochalin V N, Shenderova O, Ho D, et al. The properties and applications of nanodiamonds. Nature Nanotechnology, 2012, 7(1): 11–23

    Article  CAS  Google Scholar 

  29. Pentecost A, Gour S, Mochalin V, et al. Deaggregation of nanodiamond powders using salt- and sugar-assisted milling. ACS Applied Materials & Interfaces, 2010, 2(11): 3289–3294

    Article  CAS  Google Scholar 

  30. Peristyy A A, Fedyanina O N, Paull B, et al. Diamond based adsorbents and their application in chromatography. Journal of Chromatography A, 2014, 1357: 68–86

    Article  CAS  Google Scholar 

  31. Rehor I, Slegerova J, Kucka J, et al. Fluorescent nanodiamonds embedded in biocompatible translucent shells. Small, 2014, 10(6): 1106–1115

    Article  CAS  Google Scholar 

  32. Reina G, Zhao L, Bianco A, et al. Chemical functionalization of nanodiamonds: Opportunities and challenges ahead. Ange-wandte Chemie International Edition, 2019, 58(50): 17918–17929

    Article  CAS  Google Scholar 

  33. Boudou JP, Curmi P A, Jelezko F, etal. Highyieldfabricationof fluorescent nanodiamonds. Nanotechnology, 2009, 20(23): 235602–235613

    Article  CAS  Google Scholar 

  34. Schrand A M, Huang H, Carlson C, et al. Are diamond nanoparticles cytotoxic? The Journal of Physical Chemistry B, 2007, 111(1): 2–7

    Article  CAS  Google Scholar 

  35. Spitsyn B V, Gradoboev M N, Galushko T B, et al. Purification and functionalization of nanodiamond. In: Gruen D M, Shenderova O A, Vul A, eds. Synthesis, Properties and Applications of Ultrananocrystalline Diamond. Springer, 2005, 192: 241–252

  36. Choi E Y, Kim K, Kim C K, et al. Reinforcement of nylon 6,6/nylon 6,6 grafted nanodiamond composites by in situ reactive extrusion. Scientific Reports, 2016, 6(1): 37010–37020

    Article  CAS  Google Scholar 

  37. Zhang X, Fu C, Feng L, et al. PEGylation and polyPEGylation of nanodiamond. Polymer, 2012, 53(15): 3178–3184

    Article  CAS  Google Scholar 

  38. Krueger A. The structure and reactivity of nanoscale diamond. Journal of Materials Chemistry, 2008, 18(13): 1485–1492

    Article  CAS  Google Scholar 

  39. Jariwala D H, Patel D, Wairkar S. Surface functionalization of nanodiamonds for biomedical applications. Materials Science and Engineering C, 2020, 113: 110996

    Article  CAS  Google Scholar 

  40. Shenderova O, Koscheev A, Zaripov N, et al. Surface chemistry and properties of ozone-purified detonation nanodiamonds. The Journal of Physical Chemistry C, 2011, 115(20): 9827–9837

    Article  CAS  Google Scholar 

  41. Ackermann J, Krueger A. Efficient surface functionalization of detonation nanodiamond using ozone under ambient conditions. Nanoscale, 2019, 11(16): 8012–8019

    Article  CAS  Google Scholar 

  42. Kume A, Mochalin V N. Sonication-assisted hydrolysis of ozone oxidized detonation nanodiamond. Diamond and Related Materials, 2020, 103: 107705–107711

    Article  CAS  Google Scholar 

  43. Ackermann J, Krueger A. Highly sensitive and reproducible quantification of oxygenated surface groups on carbon nanomaterials. Carbon, 2020, 163(163): 56–62

    Article  CAS  Google Scholar 

  44. Heyer S, Janssen W, Turner S, et al. Toward deep blue nano hope diamonds: Heavily boron-doped diamond nanoparticles. ACS Nano, 2014, 8(6): 5757–5764

    Article  CAS  Google Scholar 

  45. Sun Y, Olsén P, Waag T, et al. Disaggregation and anionic activation of nanodiamonds mediated by sodium hydride — A new route to functional aliphatic polyester-based nanodiamond materials. Particle & Particle Systems Characterization, 2015, 32(1): 35–42

    Article  CAS  Google Scholar 

  46. Whitlow J, Pacelli S, Paul A. Multifunctional nanodiamonds in regenerative medicine: Recent advances and future directions. Journal of Controlled Release, 2017, 261(261): 62–86

    Article  CAS  Google Scholar 

  47. Krueger A, Stegk J, Liang Y, et al. Biotinylated nanodiamond: Simple and efficient functionalization of detonation diamond. Langmuir, 2008, 24(8): 4200–4204

    Article  CAS  Google Scholar 

  48. Bumb A, Sarkar S K, Billington N, et al. Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization. Journal of the American Chemical Society, 2013, 135(21): 7815–7818

    Article  CAS  Google Scholar 

  49. Jarre G, Liang Y, Betz P, et al. Playing the surface game — Diels-Alder reactions on diamond nanoparticles. Chemical Communications, 2011, 47(1): 544–546

    Article  CAS  Google Scholar 

  50. Lang D, Krueger A. The Prato reaction on nanodiamond: Surface functionalization by formation of pyrrolidine rings. Diamond and Related Materials, 2011, 20(2): 101–104

    Article  CAS  Google Scholar 

  51. Lang D, Krueger A. Functionalizing nanodiamond particles with N-heterocyclic iminium bromides and dicyano methanides. Diamond and Related Materials, 2017, 79: 102–107

    Article  CAS  Google Scholar 

  52. Girard H A, Arnault J C, Perruchas S, et al. Hydrogenation of nanodiamonds using MPCVD: A new route toward organic functionalization. Diamond and Related Materials, 2010, 19(7–9): 1117–1123

    Article  CAS  Google Scholar 

  53. Girard H A, El-Kharbachi A, Garcia-Argote S, et al. Tritium labeling of detonation nanodiamonds. Chemical Communications, 2014, 50(22): 2916–2918

    Article  CAS  Google Scholar 

  54. Nehlig E, Garcia-Argote S, Feuillastre S, et al. Using hydrogen isotope incorporation as a tool to unravel the surfaces of hydrogen-treated nanodiamonds. Nanoscale, 2019, 11(16): 8027–8036

    Article  CAS  Google Scholar 

  55. Claveau S, Nehlig É, Garcia-Argote S, et al. Delivery of siRNA to Ewing sarcoma tumor xenografted on mice, using hydrogenated detonation nanodiamonds: Treatment efficacy and tissue distribution. Nanomaterials, 2020, 10(3): 553

    Article  CAS  Google Scholar 

  56. Liu Y, Khabashesku V N, Halas N J. Fluorinated nanodiamond as a wet chemistry precursor for diamond coatings covalently bonded to glass surface. Journal of the American Chemical Society, 2005, 127(11): 3712–3713

    Article  CAS  Google Scholar 

  57. Lisichkin G V, Kulakova II, Gerasimov Y A, et al. Halogenation of detonation-synthesised nanodiamond surfaces. Mendeleev Communications, 2009, 19(6): 309–310

    Article  CAS  Google Scholar 

  58. Bradac C, Osswald S. Effect of structure and composition of nanodiamond powders on thermal stability and oxidation kinetics. Carbon, 2018, 132: 616–622

    Article  CAS  Google Scholar 

  59. Xu X, Yu Z. Influence of thermal oxidation on as-synthesized detonation nanodiamond. Particuology, 2012, 10(3): 339–344

    Article  CAS  Google Scholar 

  60. Shenderova O, Petrov I, Walsh J, et al. Modification of detonation nanodiamonds by heat treatment in air. Diamond and Related Materials, 2006, 15(11–12): 1799–1803

    Article  CAS  Google Scholar 

  61. Apolonskaya I A, Tyurnina A V, Kopylov P G, et al. Thermal oxidation of detonation nanodiamond. Moscow University Physics Bulletin, 2009, 64(4): 433–436

    Article  Google Scholar 

  62. Gaebel T, Bradac C, Chen J, et al. Size-reduction of nanodiamonds via air oxidation. Diamond and Related Materials, 2012, 21: 28–32

    Article  CAS  Google Scholar 

  63. Sotoma S, Hsieh F J, Chen Y W, et al. Highly stable lipid-encapsulation of fluorescent nanodiamonds for bioimaging applications. Chemical Communications, 2018, 54(8): 1000–1003

    Article  CAS  Google Scholar 

  64. Li L, Tian L, Zhao W, et al. pH-sensitive nanomedicine based on PEGylated nanodiamond for enhanced tumor therapy. RSC Advances, 2016, 6(43): 36407–36417

    Article  CAS  Google Scholar 

  65. Terada D, Sotoma S, Harada Y, et al. One-pot synthesis of highly dispersible fluorescent nanodiamonds for bioconjugation. Bio-conjugate Chemistry, 2018, 29(8): 2786–2792

    CAS  Google Scholar 

  66. Wu Y Z, Weil T. Nanodiamonds for biological applications. Physical Sciences Reviews, 2017, 2(6): UNSP 20160104

  67. Prabhakar N, Rosenholm J M. Nanodiamonds for advanced optical bioimaging and beyond. Current Opinion in Colloid & Interface Science, 2019, 39: 220–231

    Article  CAS  Google Scholar 

  68. Dworak N, Wnuk M, Zebrowski J, et al. Genotoxic and mutagenic activity of diamond nanoparticles in human peripheral lymphocytes in vitro. Carbon, 2014, 68: 763–776

    Article  CAS  Google Scholar 

  69. Moche H, Paget V, Chevalier D, et al. Carboxylated nanodiamonds can be used as negative reference in in vitro nanogenotoxicity studies. Journal of Applied Toxicology, 2017, 37(8): 954–961

    Article  CAS  Google Scholar 

  70. Zhang Q, Mochalin V N, Neitzel I, et al. Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials, 2011, 32(1): 87–94

    Article  CAS  Google Scholar 

  71. Wu X, Bruschi M, Waag T, et al. Functionalization of bone implants with nanodiamond particles and angiopoietin-1 to improve vascularization and bone regeneration. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2017, 5(32): 6629–6636

    Article  CAS  Google Scholar 

  72. Zhang T, Cui H, Fang C Y, et al. Targeted nanodiamonds as phenotype-specific photoacoustic contrast agents for breast cancer. Nanomedicine, 2015, 10(4): 573–587

    Article  CAS  Google Scholar 

  73. Manus L M, Mastarone D J, Waters E A, et al. Gd(III)-nanodiamond conjugates for MRI contrast enhancement. Nano Letters, 2010, 10(2): 484–489

    Article  CAS  Google Scholar 

  74. Panich A M, Salti M, Goren S D, et al. Gd(III)-grafted detonation nanodiamonds for MRI contrast enhancement. The Journal of Physical Chemistry C, 2019, 123(4): 2627–2631

    Article  CAS  Google Scholar 

  75. Zhao L, Shiino A, Qin H, et al. Synthesis, characterization, and magnetic resonance evaluation of polyglycerol-functionalized detonation nanodiamond conjugated with gadolinium(III) complex. Journal of Nanoscience and Nanotechnology, 2015, 15(2): 1076–1082

    Article  CAS  Google Scholar 

  76. Dutta P, Martinez G V, Gillies R J. Nanodiamond as a new hyperpolarizing agent and its 13C MRS. The Journal of Physical Chemistry Letters, 2014, 5(3): 597–600

    Article  CAS  Google Scholar 

  77. Waddington D E J, Sarracanie M, Salameh N, et al. An Overhauser-enhanced-MRI platform for dynamic free radical imaging in vivo. NMR in Biomedicine, 2018, 31(5): e3896

    Article  Google Scholar 

  78. Waddington D E J, Sarracanie M, Zhang H, et al. Nanodiamond-enhanced MRI via in situ hyperpolarization. Nature Communications, 2017, 8(1): 15118–15127

    Article  Google Scholar 

  79. Waddington D E J, Boele T, Rej E, et al. Phase-encoded hyperpolarized nanodiamond for magnetic resonance imaging. Scientific Reports, 2019, 9(1): 5950–5970

    Article  CAS  Google Scholar 

  80. Say J M, van Vreden C, Reilly D J, et al. Luminescent nanodiamonds for biomedical applications. Biophysical Reviews, 2011, 3(4): 171–184

    Article  CAS  Google Scholar 

  81. Meinhardt T, Lang D, Dill H, et al. Pushing the functionality of diamond nanoparticles to new horizons: Orthogonally functionalized nanodiamond using click chemistry. Advanced Functional Materials, 2011, 21(3): 494–500

    Article  CAS  Google Scholar 

  82. Zhang T, Neumann A, Lindlau J, etal. DNA-basedself-assembly of fluorescent nanodiamonds. Journal of the American Chemical Society, 2015, 137(31): 9776–9779

    Article  CAS  Google Scholar 

  83. Chow E K, Zhang X-Q, Chen M, et al. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Science Translational Medicine, 2011, 3(73): 73ra21

    Article  Google Scholar 

  84. Wang D, Tong Y, Li Y, et al. PEGylated nanodiamond for chemotherapeutic drug delivery. Diamond and Related Materials, 2013, 36: 26–34

    Article  CAS  Google Scholar 

  85. Liu K K, Zheng W W, Wang C C, et al. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology, 2010, 21(31): 315106–315119

    Article  CAS  Google Scholar 

  86. Dong Y, Cao R, Li Y, et al. Folate-conjugated nanodiamond for tumor-targeted drug delivery. RSC Advances, 2015, 5(101): 82711–82716

    Article  CAS  Google Scholar 

  87. Li X, Shao J, Qin Y, et al. TAT-conjugated nanodiamond for the enhanced delivery of doxorubicin. Journal of Materials Chemistry, 2011, 21(22): 7966–7974

    Article  CAS  Google Scholar 

  88. Zhang X Q, Chen M, Lam R, et al. Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. ACS Nano, 2009, 3(9): 2609–2616

    Article  CAS  Google Scholar 

  89. Purtov K, Petunin A, Inzhevatkin E, et al. Biodistribution of different sized nanodiamonds in mice. Journal of Nanoscience and Nanotechnology, 2015, 15(2): 1070–1075

    Article  CAS  Google Scholar 

  90. Inzhevatkin E, Baron A, Maksimov N, et al. Biodistribution of nanodiamonds in the body of mice using EPR spectrometry. IET Science, Measurement & Technology, 2019, 13(7): 984–988

    Article  Google Scholar 

  91. Suliman S, Mustafa K, Krueger A, et al. Nanodiamond modified copolymer scaffolds affects tumour progression of early neoplastic oral keratinocytes. Biomaterials, 2016, 95: 11–21

    Article  CAS  Google Scholar 

  92. Okamoto M, John B. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Progress in Polymer Science, 2013, 38(10–11): 1487–1503

    Article  CAS  Google Scholar 

  93. Chang Y R, Lee H Y, Chen K, et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nature Nanotechnology, 2008, 3(5): 284–288

    Article  CAS  Google Scholar 

  94. Parveen S, Misra R, Sahoo S K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8(2): 147–166

    Article  CAS  Google Scholar 

  95. Dang X, Bardhan N M, Qi J, et al. Deep-tissue optical imaging of near cellular-sized features. Scientific Reports, 2019, 9(1): 3873–3885

    Article  CAS  Google Scholar 

  96. Su L J, Wu M S, Hui Y Y, et al. Fluorescent nanodiamonds enable quantitative tracking of human mesenchymal stem cells in miniature pigs. Scientific Reports, 2017, 7(1): 45607–45618

    Article  CAS  Google Scholar 

  97. Steinberg I, Huland D M, Vermesh O, et al. Photoacoustic clinical imaging. Photoacoustics, 2019, 14: 77–98

    Article  Google Scholar 

  98. Laurent S, Henoumont C, Stanicki D, et al. MRI Contrast Agents: From Molecules to Particles. Springer Singapore, 2017

    Book  Google Scholar 

  99. Lipani E, Laurent S, Surin M, et al. High-relaxivity and luminescent silica nanoparticles as multimodal agents for molecular imaging. Langmuir, 2013, 29(10): 3419–3427

    Article  CAS  Google Scholar 

  100. Guo C, Hu J, Bains A, et al. The potential of peptide dendron functionalized and gadolinium loaded mesoporous silica nanoparticles as magnetic resonance imaging contrast agents. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2016, 4(13): 2322–2331

    Article  CAS  Google Scholar 

  101. Carniato F, Tei L, Botta M. Gd-based mesoporous silica nanoparticles as MRI probes: Gd-based mesoporous silica nanoparticles as MRI probes. European Journal of Inorganic Chemistry, 2018, 2018(46): 4936–4954

    Article  CAS  Google Scholar 

  102. Pellico J, Ellis C M, Davis J J. Nanoparticle-based paramagnetic contrast agents for magnetic resonance imaging. Contrast Media & Molecular Imaging, 2019, UNSP 1845637

  103. Rammohan N, MacRenaris K W, Moore L K, et al. Nanodiamond-gadolinium(III) aggregates for tracking cancer growth in vivo at high field. Nano Letters, 2016, 16(12): 7551–7564

    Article  CAS  Google Scholar 

  104. Osipov V Yu, Aleksenskiy A E, Takai K, et al. Magnetic studies of a detonation nanodiamond with the surface modified by gadolinium ions. Physics of the Solid State, 2015, 57(11): 2314–2319

    Article  CAS  Google Scholar 

  105. Hou W, Toh T B, Abdullah L N, et al. Nanodiamond-manganese dual mode MRI contrast agents for enhanced liver tumor detection. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13(3): 783–793

    Article  CAS  Google Scholar 

  106. Caravan P, Farrar C T, Frullano L, et al. Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium- and manganese-based T1 contrast agents. Contrast Media & Molecular Imaging, 2009, 4(2): 89–100

    Article  CAS  Google Scholar 

  107. Dhas M K, Utsumi H, Jawahar A, et al. Dynamic nuclear polarization properties of nitroxyl radical in high viscous liquid using Overhauser-enhanced magnetic resonance imaging (OMRI). Journal of Magnetic Resonance, 2015, 257: 32–38

    Article  CAS  Google Scholar 

  108. Jugniot N, Duttagupta I, Rivot A, et al. An elastase activity reporter for electronic paramagnetic resonance (EPR) and Overhauser-enhanced magnetic resonance imaging (OMRI) as a line-shifting nitroxide. Free Radical Biology & Medicine, 2018, 126: 101–112

    Article  CAS  Google Scholar 

  109. Ajoy A, Liu K, Nazaryan R, et al. Orientation-independent room temperature optical 13C hyperpolarization in powdered diamond. Science Advances, 2018, 4(5): eaar5492

    Article  CAS  Google Scholar 

  110. Kwiatkowski G, Jähnig F, Steinhauser J, et al. Direct hyperpolarization of micro- and nanodiamonds for bioimaging applications — Considerations on particle size, functionalization and polarization loss. Journal of Magnetic Resonance, 2018, 286: 42–51

    Article  CAS  Google Scholar 

  111. Ardenkjaer-Larsen J H, Fridlund B, Gram A, et al. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(18): 10158–10163

    Article  CAS  Google Scholar 

  112. Boele T, Waddington D E J, Gaebel T, et al. Tailored nanodiamonds for hyperpolarized 13C MRI. Physical Review B, 2020, 101(15): 155416

    Article  CAS  Google Scholar 

  113. Chen Q, Schwarz I, Jelezko F, et al. Resonance-inclined optical nuclear spin polarization of liquids in diamond structures. Physical Review B, 2016, 93(6): 060408

    Article  CAS  Google Scholar 

  114. Rej E, Gaebel T, Boele T, et al. Hyperpolarized nanodiamond with long spin-relaxation times. Nature Communications, 2015, 6(1): 8459–8466

    Article  CAS  Google Scholar 

  115. Merkel T J, DeSimone J M. Dodging drug-resistant cancer with diamonds. Science Translational Medicine, 2011, 3(73): 73ps8

    Article  Google Scholar 

  116. Wu Y, Ermakova A, Liu W, et al. Programmable biopolymers for advancing biomedical applications of fluorescent nanodiamonds. Advanced Functional Materials, 2015, 25(42): 6576–6585

    Article  CAS  Google Scholar 

  117. Gismondi A, Reina G, Orlanducci S, et al. Nanodiamonds coupled with plant bioactive metabolites: A nanotech approach for cancer therapy. Biomaterials, 2015, 38: 22–35

    Article  CAS  Google Scholar 

  118. Zhang X, Wang S, Fu C, et al. PolyPEGylated nanodiamond for intracellular delivery of a chemotherapeutic drug. Polymer Chemistry, 2012, 3(10): 2716–2719

    Article  CAS  Google Scholar 

  119. Zwicke G L, Mansoori G A, Jeffery C J. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Reviews, 2012, 3: 18496

    Article  CAS  Google Scholar 

  120. Kranz C, ed. Carbon-Based Nanosensor Technology. 1st ed. Cham, Switzerland: Springer International Publishing, 2019

    Google Scholar 

  121. Neburkova J, Vavra J, Cigler P. Coating nanodiamonds with biocompatible shells for applications in biology and medicine. Current Opinion in Solid State and Materials Science, 2017, 21 (1): 43–53

    Article  CAS  Google Scholar 

  122. Smith A H, Robinson E M, Zhang X Q, et al. Triggered release of therapeutic antibodies from nanodiamond complexes. Nanoscale, 2011, 3(7): 2844–2848

    Article  CAS  Google Scholar 

  123. Kong X L, Huang L C L, Hsu C M, et al. High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis. Analytical Chemistry, 2005, 77(1): 259–265

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Center for Microscopy and Molecular Imaging (CMMI, supported by the European Regional Development Fund and Wallonia), the Fond National de la Recherche Scientifique (FNRS), the Actions de Recherche Concertées (ARC) programs of the French Community of Belgium, COST actions and the Walloon region. The authors would like to acknowledge the Interuniversity Attraction Poles of the Belgian Federal Science Policy Office and the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 863099.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Laurent.

Ethics declarations

Disclosure of potential conflicts of interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garifo, S., Stanicki, D., Ayata, G. et al. Nanodiamonds as nanomaterial for biomedical field. Front. Mater. Sci. 15, 334–351 (2021). https://doi.org/10.1007/s11706-021-0567-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-021-0567-3

Keywords

Navigation