Skip to main content
Log in

Polymeric micelle nanocarriers in cancer research

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Amphiphilic block copolymers (ABCs) assemble into a spherical nanoscopic supramolecular core/shell nanostructure termed a polymeric micelle that has been widely researched as an injectable nanocarrier for poorly water-soluble anticancer agents. The aim of this review article is to update progress in the field of drug delivery towards clinical trials, highlighting advances in polymeric micelles used for drug solubilization, reduced off-target toxicity and tumor targeting by the enhanced permeability and retention (EPR) effect. Polymeric micelles vary in stability in blood and drug release rate, and accordingly play different but key roles in drug delivery. For intravenous (IV) infusion, polymeric micelles that disassemble in blood and rapidly release poorly water-soluble anticancer agent such as paclitaxel have been used for drug solubilization, safety and the distinct possibility of toxicity reduction relative to existing solubilizing agents, e.g., Cremophor EL. Stable polymeric micelles are long-circulating in blood and reduce distribution to non-target tissue, lowering off-target toxicity. Further, they participate in the EPR effect in murine tumor models. In summary, polymeric micelles act as injectable nanocarriers for poorly water-soluble anticancer agents, achieving reduced toxicity and targeting tumors by the EPR effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen W, Zheng R, Baade P, Zhang S, Zeng H, Bray F, Jemal A, Yu X, He J. Cancer statistics in China, 2015. CA: a Cancer Journal for Clinicians, 2016, 16(2): 115–132

    Google Scholar 

  2. Mehlen P, Puisieux A. Metastasis: A question of life or death. Nature Reviews. Cancer, 2006, 6(6): 449–458

    Article  CAS  Google Scholar 

  3. Creixell P, Schoof E, Erler J, Linding R. Navigating cancer network attractors for tumor-specific therapy. Nature Biotechnology, 2012, 30(9): 842–848

    Article  CAS  Google Scholar 

  4. Xu X, Ho W, Zhang X, Betrand N, Farokhzad O. Cancer nanomedicine: From targeted delivery to combination therapy. Trends in Molecular Medicine, 2015, 21(4): 223–232

    Article  CAS  Google Scholar 

  5. Hamilton G. Antibody-drug conjugates for cancer therapy: The technological and regulatory challenges of developing drug-biologic hybrids. Biologicals, 2015, 43(5): 318–332

    Article  CAS  Google Scholar 

  6. Peer D, Karp J, Hong S, Farokhzad O, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007, 2(12): 751–760

    Article  CAS  Google Scholar 

  7. Deng C, Jiang Y, Cheng R, Meng F, Zhong Z. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: Promises, progress and prospects. Nano Today, 2012, 7(5): 467–480

    Article  CAS  Google Scholar 

  8. Gong J, Chen M, Zheng Y, Wang S, Wang Y. Polymeric micelles drug delivery system in oncology. Journal of Controlled Release, 2012, 159(3): 312–323

    Article  CAS  Google Scholar 

  9. Matsumura Y. The drug discovery by nanomedicine and its clinical experience. Japanese Journal of Clinical Oncology, 2014, 44(6): 515–525

    Article  Google Scholar 

  10. Eetezadi S, Ekdawi S, Allen C. The challenges facing block copolymer micelles for cancer therapy: In vivo barriers and clinical translation. Advanced Drug Delivery Reviews, 2015, 91(8): 7–22

    Article  CAS  Google Scholar 

  11. Nishiyama N. Nanocarriers shape up for long life. Nature Nanotechnology, 2007, 2(4): 203–204

    Article  CAS  Google Scholar 

  12. Suk J, Xu Q, Kim N, Hanes J, Ensign L. Pegylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced Drug Delivery Reviews, 2016, 99(Pt A): 28–51

    Article  CAS  Google Scholar 

  13. Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophorel: The drawbacks and advantages of vehicle selection for drug formulation. European Journal of Cancer, 2001, 37(13): 159–198

    Article  Google Scholar 

  14. Banerji U, Walton M, Raynaud F, Grimshaw R, Kelland L, Valenti M, Judson I, Workman P. Pharmacokinetic-pharmacodynamic relationships for the heat shock protein 90 molecular chaperone inhibitor 17-allyamino, 17-demethoxygeldanamycin in human ovarian cancer xenograft model. Clinical Cancer Research, 2005, 11(19): 7023–7032

    Article  CAS  Google Scholar 

  15. Blois J, Smith A, Josephson L. The slow death response when screening chemotherapeutic agents. Cancer Chemotherapy and Pharmacology, 2011, 68(3): 795–803

    Article  CAS  Google Scholar 

  16. Stirland D, Nichols J, Miura S, Bae Y. Mind the gap: A survey of how cancer drug carriers are susceptible to the gap between research and practice. Journal of Controlled Release, 2013, 172(3): 1045–1064

    Article  CAS  Google Scholar 

  17. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano M, Miyazono K, Uesaka M, Nishiyama N, Kataoka K. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nature Nanotechnology, 2011, 6(12): 815–823

    Article  CAS  Google Scholar 

  18. Kim S, Kim D, Shim Y, Bang J, Oh H, Kim S, Seo M. In vivo evaluation of polymeric micellar paclitaxel formulation: Toxicity and efficacy. Journal of Controlled Release, 2001, 72(1–3): 191–202

    Article  CAS  Google Scholar 

  19. Cho H, Gao J, Kwon G. PEG-b-PLA micelles and PLGA-b-PEG-b-PLGA sol-gels for drug delivery. Journal of Controlled Release, 2015, doi: 10.1016/j.jconrel.2015.12.015

    Google Scholar 

  20. Kim T, Kim D, Chung J, Shin S, Kim S, Heo D, Kim N, Bang Y. Phase I and pharmacokinetics study of genexol-pm, a cremophorfree, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clinical Cancer Research, 2004, 10(11): 3708–3716

    Article  CAS  Google Scholar 

  21. Kundranda M, Niu J. Albumin-bound paclitaxel in solid tumors: Clinical development and future directions. Drug Design, Development and Therapy, 2015, 9(6): 3767–3777

    Article  Google Scholar 

  22. Desai N, De T, Ci S, Louie L, Trieu V. Characterization and in vitro/in vivo dissolution of nab-paclitaxel nanoparticles. Cancer Research, 2005, 11(5): 5624

    Google Scholar 

  23. Perego P, Cossa G, Zuco V, Zunino F. Modulation of cell sensitivity to antitumor agents by targeting survival pathways. Biochemical Pharmacology, 2010, 80(10): 1459–1465

    Article  CAS  Google Scholar 

  24. Woodcock J, Griffin J, Behrman R. Development of novel combination therapies. New England Journal of Medicine, 2011, 364(11): 985–987

    Article  CAS  Google Scholar 

  25. Ramalingam S, Egorin M, Ramanathan R, Remick S, Sikorski R, Lagattuta T, Chatta G, Friedland D, Stoller R, Potter D, Ivy S, Belani C. A phase I study of 17-allylamino-17-demethoxygeldanamycin combined with paclitaxel in patients with advanced solid malignancies. Clinical Cancer Research, 2008, 14(11): 3456–3461

    Article  CAS  Google Scholar 

  26. O’Reilly T, McSheehy P, Wartmann M, Lassota P, Brandt R, Lane H. Evaluation of the mtor inhibitor, everolimus, in combination with antitumor agents using human tumor models in vitro and in vivo. Anti-Cancer Drugs, 2011, 22(1): 58–78

    Article  Google Scholar 

  27. Solit D, Basso A, Olshen A, Scher H, Rosen N. Inhibition of heat shock protein 90 function down-regulates akt kinase and sensitizes tumors to taxol. Cancer Research, 2003, 63(9): 2139–2144

    CAS  Google Scholar 

  28. Hurvitz S, Andre F, Jiang Z, Shao Z, Mano M, Neciosup S, Tseng L, Zhang Q, Shen K, Liu D, Dreosti L, Burris H, Toi M, Buyse M, Cabaribere D, Lindsay M, Rao S, Pacaud L, Taran T, Slamon D. Combination of everolimus with trastuzumab plus paclitaxel as first-line treatment for patients with her2-positive advanced breast cancer (bolero-1): A phase 3, randomized, double-blind, multicentre trial. Lancet Oncology, 2015, 16(7): 816–829

    Article  CAS  Google Scholar 

  29. Stoeltzing O. Dual-targeting of mtor and hsp90 for cancer therapy: Facing oncogenic feed-back-loops and acquired mTOR resistance. Cell Cycle (Georgetown, Tex.), 2010, 9(11): 2051–2052

    Article  CAS  Google Scholar 

  30. Shin H, Alani A, Cho H, Bae Y, Kolesar J, Kwon G. A 3-in-1 polymeric micelle nanocontainer for poorly water-soluble drugs. Molecular Pharmaceutics, 2011, 8(4): 1257–1265

    Article  CAS  Google Scholar 

  31. Hasenstein J, Shin H, Kasmerchak K, Buehler D, Kwon G, Kozak K. Antitumor activity of triolimus: A novel multi-drug-loaded micelle containing paclitaxel, rapamycin and 17-aag. Molecular Cancer Therapeutics, 2012, 11(1): 1–10

    Article  Google Scholar 

  32. Shin H, Cho H, Lai T, Kozak K, Kolesar J, Kwon G. Pharmacokinetic study of 3-in-1 poly(ethylene glycol)-block-poly (D,L-lactic acid) micelles carrying paclitaxel, 17-allylamino-17-demethoxygeldanamycin, and rapamycin. Journal of Controlled Release, 2012, 163(1): 93–99

    Article  CAS  Google Scholar 

  33. Yokoyama M, Okano T, Sakurai Y, Fukushima S, Okamoto K, Kataoka K. Selective delivery of adriamycin to a solid tumor using a polymeric micelle carrier system. Journal of Drug Targeting, 1999, 7 (3): 171–186

    Article  CAS  Google Scholar 

  34. Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y, Shiro K, Okusaka T, Ueno H, Ikeda M, Watanabe N. Phase I clinical trial and pharmacokinetic evaluation of nk911, a micelleencapsulated doxorubicin. British Journal of Cancer, 2004, 91(10): 1775–1781

    Article  CAS  Google Scholar 

  35. Liu J, Zeng F, Allen C. In vivo fate of unimers and micelles of a poly (ethylene glycol)-block-poly(caprolactone) copolymer in mice following intravenous administration. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 65(3): 309–319

    Article  CAS  Google Scholar 

  36. Montazeri Aliabadi H, Brocks D R, Lavasanifar A. Polymeric micelles for the solubilization and delivery of cyclosporine A: Pharmacokinetics and biodistribution. Biomaterials, 2005, 26(35): 7251–7259

    Article  Google Scholar 

  37. Aliabadi H, Elhasi S, Brocks D, Lavasanifar A. Polymeric micellar delivery reduces kidney distribution and nephrotoxic effects of cyclosporine after multiple dosing. Journal of Pharmaceutical Sciences, 2008, 97(5): 1916–1926

    Article  CAS  Google Scholar 

  38. Binkhathlan Z, Hamdy D A, Brocks D R, Lavanifar A. Development of a polymeric micelle formulation for valspodar and assessment of its pharmacokinetics in rat. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 75(2): 90–95

    Article  CAS  Google Scholar 

  39. Matsumura M, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanisms of tumoritropic accumulation of proteins and the anticancer agent smancs. Cancer Research, 1986, 46(12 Pt 1): 6387–6392

    CAS  Google Scholar 

  40. Hamaguchi T, Matsumura Y, Suzuki M, Shimizu K, Goda R, Nakamura I, Nakatomi I, Yokoyama M, Kataoka K, Kakizoe T. Nk105, a paclitaxel-incorporating micellar nanoparticle formulation can extend in vivo antitumor activity and reduce the neurotoxicity of paclitaxel. British Journal of Cancer, 2005, 92(7): 1240–1246

    Article  CAS  Google Scholar 

  41. Kato K, Chin K, Yoshikawa T, Yamaguchi K, Tsuji Y, Esaki T, Sakai K, Kimura M, Hamaguchi T, Shimada Y, Matsumura Y, Ikeda R. Phase II study of nk105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Investigational New Drugs, 2012, 30(4): 1621–1627

    Article  CAS  Google Scholar 

  42. Bae Y, Fukushima S, Harada A, Kataoka K. Design of environmentsensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular ph change. Angewandte Chemie International Edition, 2003, 42(38): 4640–4643

    Article  CAS  Google Scholar 

  43. Bae Y, Hishiyama N, Fukushima S, Koyama H, Yosuhiro M, Kataoka K. Preparation and biological characterization of polymeric micelles drug carriers with intracellular pH-triggered drug release property: Tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjugate Chemistry, 2005, 16(1): 122–130

    Article  CAS  Google Scholar 

  44. Harada M, Bobe J, Saito H, Shibata N, Tanaka R, Hayashi T, Kato Y. Improved anti-tumor activity of stabilized anthracycline polymeric micelle formulation, nc-6300. Cancer Science, 2011, 102(1): 1192–1199

    Article  Google Scholar 

  45. Wei C, Guo J, Wang C. Dual stimuli-responsive polymeric micelles exhibiting “and” logic gate for controlled release of adriamycin. Macromolecular Rapid Communications, 2011, 32(5): 451–455

    Article  CAS  Google Scholar 

  46. Lai T, Cho H, Kwon G. Reversibly core-cross-linked polymeric micelles with ph-and reduction-sensitivities: Effects of cross-linking degree on particle stability, drug release kinetics and anti-tumor efficacy. Polymer Chemistry, 2014, 5(5): 1650–1661

    Article  CAS  Google Scholar 

  47. Bae Y, Diezi T, Zhao A, Kwon G. Mixed polymeric micelles for combination cancer chemotherapy through concurrent delivery of multiple chemotherapeutic agents. Journal of Controlled Release, 2007, 122(3): 324–330

    Article  CAS  Google Scholar 

  48. Torchilin V P. Targeted polymeric micelles for delivery of poorly soluble drugs. Cellular and Molecular Life Sciences, 2004, 61(19): 2549–2559

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen S. Kwon.

Additional information

Dr. Glen S. Kwon is the Jens T. Carstensen Professor in the School of Pharmacy at the University of Wisconsin. He received a B.S. in Chemistry in 1986 and Ph.D. in Pharmaceutics in 1991 from the University of Utah. He was a Japan Society for the Promotion of Science Postdoctoral Fellow at the Institute of Advanced Biomedical Engineering and Science at Tokyo Women’s Medical University in Tokyo, Japan from 1991 to 1993. He was an Assistant Professor in the Faculty of Pharmacy and Pharmaceutical Sciences at the University of Alberta in Edmonton, Canada from 1993 to 1997. He received the Jorge Heller Journal of Controlled Release/Controlled Release Society (CRS) Outstanding Paper Award in 1994 and the CRS Young Investigator Research Achievement Award in 2003. He was elected as a Fellow of the American Association of Pharmaceutical Scientists in 2012. He was selected as a highly-cited researcher by Thomson Reuters in the category of Pharmacology & Toxicology in 2014. He is co-founder of Co-D Therapeutics Inc., a start-up company dedicated to novel multi-drug loaded polymeric micelles. He is a member of the Experimental Therapeutics Program at the UW Carbone Cancer Center, an Adjunct Professor in the Faculty of Pharmacy and Pharmaceutical Sciences at the University of Alberta, member of the Global siRNA Initiative at the Korean Institute of Science and Technology, and a member of the Board of Scientific Advisors in CRS. He serves on editorial boards of J. Controlled Release, Molecular Pharmaceutics, and Pharm. Res. His research focuses on polymeric carrier systems for drug, gene and peptide/protein-based therapeutics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, D.H., Tam, Y.T. & Kwon, G.S. Polymeric micelle nanocarriers in cancer research. Front. Chem. Sci. Eng. 10, 348–359 (2016). https://doi.org/10.1007/s11705-016-1582-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-016-1582-2

Keywords

Navigation