Skip to main content
Log in

Strategies on designing multifunctional surfaces to prevent biofilm formation

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Bacteria adhesion and biofilm formation have raised severe problems on public health, food industry and many other areas. A variety of reagents and surface coatings have been developed to kill bacteria and/or limit their interaction with surfaces. It has also attracted many efforts to integrate different bactericidal elements together and maximize antibacterial efficiency. Herein, we review mechanisms for both passive and active approaches to resist and kill bacteria respectively, and discuss integrated strategies based on these two approaches. We also offer perspective on future research direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khoo X, Grinstaff M W. Novel infection-resistant surface coatings: A bioengineering approach. MRS Bulletin, 2011, 36: 357–366

    Article  CAS  Google Scholar 

  2. Costerton J W, Lewandowski Z, Caldwell D E, Korber D R, Lappin-Scott H M. Microbial biofilms. Annual Review of Microbiology. 1995, 49: 711–745

    Article  CAS  Google Scholar 

  3. Donlan R M. Biofilm formation: A clinically relevant microbiological process. Clinical Infectious Diseases. 2001, 33: 1387–1392

    Article  CAS  Google Scholar 

  4. Srey S, Jahid I K, Ha S D. Biofilm formation in food industries: A food safety concern. Food Control. 2013, 31: 572–585

    Article  Google Scholar 

  5. Cheng G, Li G, Xue H, Chen S, Bryers J D, Jiang S. Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials. 2009, 30: 5234–5240

    Article  CAS  Google Scholar 

  6. Cheng G, Zhang Z, Chen S, Bryers J D, Jiang S. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials. 2007, 28: 4192–4199

    Article  CAS  Google Scholar 

  7. Saldarriaga F I C, van der Mei H C, Lochhead M J, Grainger D W, Busscher H J. The inhibition of the adhesion of clinically isolated bacterial strains on multi-component cross-linked poly(ethylene glycol)-based polymer coatings. Biomaterials. 2007, 28: 4105–4112

    Article  CAS  Google Scholar 

  8. Samal S K, Dash M, van Vlierberghe S, Kaplan D L, Chiellini E, van Blitterswijk C, Moroni L, Dubruel P. Cationic polymers and their therapeutic potential. Chemical Society Reviews. 2012, 41: 7147–7194

    Article  CAS  Google Scholar 

  9. Vinsova J, Vavrikova E. Recent advances in drugs and prodrugs design of chitosan. Current Pharmaceutical Design. 2008, 14: 1311–1326

    Article  CAS  Google Scholar 

  10. Liu H, Du Y, Wang X, Sun L. Chitosan kills bacteria through cell membrane damage. International Journal of Food Microbiology. 2004, 95: 147–155

    Article  CAS  Google Scholar 

  11. Li P, Poon Y F, Li W, Zhu H Y, Yeap S H, Cao Y, Qi X, Zhou C, Lamrani M, Beuerman R W, Kang E T, Mu Y, Li C M, Chang M W, Jan L S S, Chan-Park M B. A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nature Materials. 2011, 10: 149–156

    Article  CAS  Google Scholar 

  12. Milovic N M, Wang J, Lewis K, Klibanov A M. Immobilized nalkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed. Biotechnology and Bioengineering. 2005, 90: 715–722

    Article  CAS  Google Scholar 

  13. Tiller J C, Liao C J, Lewis K, Klibanov A M. Designing surfaces that kill bacteria on contact. Proceedings of the National Academy of Sciences of the United States of America. 2001, 98: 5981–5985

    Article  CAS  Google Scholar 

  14. Lin J, Qiu S, Lewis K, Klibanov A M. Mechanism of bactericidal and fungicidal activities of textiles covalently modified with alkylated polyethylenimine. Biotechnology and Bioengineering. 2003, 83: 168–172

    Article  CAS  Google Scholar 

  15. Vaara M. Agents that increase the permeability of the outer membrane. Microbiological Reviews. 1992, 56: 395–411

    CAS  Google Scholar 

  16. Helander I M, Alakomi H L, Latva-Kala K, Koski P. Polyethyleneimine is an effective permeabilizer of gram-negative bacteria. Microbiology. 1997, 143(Pt 10): 3193–3199

    Article  CAS  Google Scholar 

  17. Khalil H, Chen T, Riffon R, Wang R, Wang Z. Synergy between polyethylenimine and different families of antibiotics against a resistant clinical isolate of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy. 2008, 52: 1635–1641

    Article  CAS  Google Scholar 

  18. Reddy K V R, Yedery R D, Aranha C. Antimicrobial peptides: Premises and promises. International Journal of Antimicrobial Agents. 2004, 24: 536–547

    Article  CAS  Google Scholar 

  19. Oren Z, Shai Y. Mode of action of linear amphipathic a-helical antimicrobial peptides. Peptide Science. 1998, 47: 451–463

    Article  CAS  Google Scholar 

  20. Boman H G, Marsh J, Goode J A. Antimicrobial Peptides. John Wiley & Sons, 1994

    Google Scholar 

  21. Cudic M, Otvos L Jr. Intracellular targets of antibacterial peptides. Current Drug Targets, 2002, 3: 101–106

    Article  CAS  Google Scholar 

  22. Rapsch K, Bier F F, Tadros M, von Nickisch-Rosenegk M. Identification of antimicrobial peptides and immobilization strategy suitable for a covalent surface coating with biocompatible properties. Bioconjugate Chemistry. 2014, 25: 308–319

    Article  CAS  Google Scholar 

  23. Webb J, Spencer R. The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. Journal of Bone and Joint Surgery. British Volume. 2007, 89: 851–857

    CAS  Google Scholar 

  24. Jaeblon T. Polymethylmethacrylate: Properties and contemporary uses in orthopaedics. Journal of the American Academy of Orthopaedic Surgeons. 2010, 18: 297–305

    Google Scholar 

  25. Schwalbe R, Steele-Moore L, Goodwin A C. Antimicrobial Susceptibility Testing Protocols. Abingdon: CRC Press, 2007

    Book  Google Scholar 

  26. Finberg R W, Moellering R C, Tally F P, Craig W A, Pankey G A, Dellinger E P, West M A, Joshi M, Linden P K, Rolston K V, Rotschafer J C, Rybak M J. The importance of bactericidal drugs: Future directions in infectious disease. Clinical Infectious Diseases. 2004, 39: 1314–1320

    Article  CAS  Google Scholar 

  27. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents. 2010, 35: 322–332

    Article  CAS  Google Scholar 

  28. Stewart P S, William Costerton J. Antibiotic resistance of bacteria in biofilms. Lancet. 2001, 358: 135–138

    Article  CAS  Google Scholar 

  29. Nemoto K, Hirota K, Ono T, Murakami K, Murakami K, Nagao D, Miyake Y. Effect of varidase (streptokinase) on biofilm formed by Staphylococcus aureus. Chemotherapy. 2000, 46: 111–115

    Article  CAS  Google Scholar 

  30. Yasuda H, Ajiki Y, Koga T, Kawada H, Yokota T. Interaction between biofilms formed by Pseudomonas aeruginosa and clarithromycin. Antimicrobial Agents and Chemotherapy. 1993, 37: 1749–1755

    Article  CAS  Google Scholar 

  31. Belly R, Kydd G. Silver resistance in microorganisms. Developments in Industrial Microbiology. 1982, 23: 567–578

    Google Scholar 

  32. Bragg P, Rainnie D. The effect of silver ions on the respiratory chain of Escherichia coli. Canadian Journal of Microbiology. 1974, 20: 883–889

    Article  CAS  Google Scholar 

  33. Siddhartha S, Tanmay B, Arnab R, Gajendra S, Ramachandrarao P, Debabrata D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007, 18: 225103

    Article  CAS  Google Scholar 

  34. Prabhu S, Poulose E. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters. 2012, 2: 1–10

    Article  Google Scholar 

  35. Russell A D, Hugo W B. Antimicrobial activity and action of silver. Progress in Medicinal Chemistry. 1994, 31: 351–370

    Article  CAS  Google Scholar 

  36. Ip M, Lui S L, Poon V K, Lung I, Burd A. Antimicrobial activities of silver dressings: An in vitro comparison. Journal of Medical Microbiology. 2006, 55: 59–63

    Article  CAS  Google Scholar 

  37. Gupta A, Silver S. Silver as a biocide: Will resistance become a problem? Nature Biotechnology, 1998, 16: 888

    Article  CAS  Google Scholar 

  38. Hu R, Li G, Jiang Y, Zhang Y, Zou J J, Wang L, Zhang X. Silverzwitterion organic-inorganic nanocomposite with antimicrobial and antiadhesive capabilities. Langmuir. 2013, 29: 3773–3779

    Article  CAS  Google Scholar 

  39. Kim J S, Kuk E, Yu K N, Kim J H, Park S J, Lee H J, Kim S H, Park Y K, Park Y H, Hwang C Y, Kim Y K, Lee Y S, Jeong D H, ChoM H. Antimicrobial effects of silver nanoparticles. Nanomedicine; Nanotechnology, Biology, and Medicine. 2007, 3: 95–101

    Article  CAS  Google Scholar 

  40. Li P, Li J, Wu C, Wu Q, Li J. Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology. 2005, 16: 1912

    Article  CAS  Google Scholar 

  41. Ruparelia J P, Chatterjee A K, Duttagupta S P, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia. 2008, 4: 707–716

    Article  CAS  Google Scholar 

  42. Kim Y H. Choi Y, Kim K M, Choi S Y. Evaluation of copper ion of antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori and optical, mechanical properties. Applied Surface Science. 2012, 258: 3823–3828

    Article  CAS  Google Scholar 

  43. Solioz M, Stoyanov J V. Copper homeostasis in enterococcus hirae. FEMS Microbiology Reviews. 2003, 27: 183–195

    Article  CAS  Google Scholar 

  44. Parker A, Paul R, Power G. Electrochemistry of the oxidative leaching of copper from chalcopyrite. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1981, 118: 305–316

    Article  CAS  Google Scholar 

  45. Kitching R, Chapman H, Hughes J. Levels of activity as indicators of sublethal impacts of copper contamination and salinity reduction in the intertidal gastropod, polinices incei philippi. Marine Environmental Research. 1987, 23: 79–87

    Article  CAS  Google Scholar 

  46. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin P G, Traversa E. Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chemistry of Materials. 2005, 17: 5255–5262

    Article  CAS  Google Scholar 

  47. Vaseashta A, Dimova-Malinovska D. Nanostructured and nanoscale devices, sensors and detectors. Science and Technology of Advanced Materials. 2005, 6: 312–318

    Article  CAS  Google Scholar 

  48. Comini E. Metal oxide nano-crystals for gas sensing. Analytica Chimica Acta. 2006, 568: 28–40

    Article  CAS  Google Scholar 

  49. Yoon K Y, Hoon Byeon J, Park J H, Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of the Total Environment. 2007, 373: 572–575

    Article  CAS  Google Scholar 

  50. Chatterjee A K, Chakraborty R, Basu T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology. 2014, 25: 135101

    Article  CAS  Google Scholar 

  51. Liaudet L, Soriano F G, Szabó C. Biology of nitric oxide signaling. Critical Care Medicine. 2000, 28(37): 52

    Google Scholar 

  52. Tarr H L A. Bacteriostatic action of nitrates. Nature. 1941, 147: 417–418

    Article  CAS  Google Scholar 

  53. Zumft W G. The biological role of nitric oxide in bacteria. Archives of Microbiology. 1993, 160: 253–264

    Article  CAS  Google Scholar 

  54. Mancinelli R L. Mckay C P. Effects of nitric oxide and nitrogen dioxide on bacterial growth. Applied and Environmental Microbiology. 1983, 46: 198–202

    CAS  Google Scholar 

  55. Wink D A, Mitchell J B. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radical Biology & Medicine. 1998, 25: 434–456

    Article  CAS  Google Scholar 

  56. Kono Y, Shibata H, Adachi K, Tanaka K. Lactate-dependent killing of Escherichia coli by nitrite plus hydrogen-peroxide: A possible role of nitrogen dioxide. Archives of Biochemistry and Biophysics. 1994, 311: 153–159

    Article  CAS  Google Scholar 

  57. Nablo B J, Schoenfisch M H. Antibacterial properties of nitric oxide-releasing sol-gels. Journal of Biomedical Materials Research. Part A. 2003, 67: 1276–1283

    Google Scholar 

  58. Major T C, Brisbois E J, Jones A M, Zanetti M E, Annich G M, Bartlett R H, Handa H. The effect of a polyurethane coating incorporating both a thrombin inhibitor and nitric oxide on hemocompatibility in extracorporeal circulation. Biomaterials. 2014, 35: 7271–7285

    Article  CAS  Google Scholar 

  59. Gupta S, Amoako K A, Suhaib A, Cook K E. Multi-modal, surface-focused anticoagulation using poly-2-methoxyethylacrylate polymer grafts and surface nitric oxide release. Advanced Materials Interfaces. 2014, 1, DOI:10.1002/admi.201400012

    Google Scholar 

  60. Amoako K A, Montoya P J, Major T C, Suhaib A B, Handa H, Brant D O, Meyerhoff M E, Bartlett R H, Cook K E. Fabrication and in vivo thrombogenicity testing of nitric oxide generating artificial lungs. Journal of Biomedical Materials Research. Part A. 2013, 101: 3511–3519

    Article  CAS  Google Scholar 

  61. Zwischenberger J B, Anderson C M, Cook K E, Lick S D, Mockros L F, Bartlett R H. Development of an implantable artificial lung: Challenges and progress. ASAIO Journal (American Society for Artificial Internal Organs). 2001, 47: 316–320

    Article  CAS  Google Scholar 

  62. Chapman R G, Ostuni E, Liang M N, Meluleni G, Kim E, Yan L, Pier G, Warren H S, Whitesides G M. Polymeric thin films that resist the adsorption of proteins and the adhesion of bacteria. Langmuir. 2001, 17: 1225–1233

    Article  CAS  Google Scholar 

  63. Ista L K, Fan H, Baca O, López G P. Attachment of bacteria to model solid surfaces’ oligo(ethylene glycol) surfaces inhibit bacterial attachment. FEMS Microbiology Letters. 1996, 142: 59–63

    Article  CAS  Google Scholar 

  64. Jeon S I, Lee J H, Andrade J D, De Gennes P G. Protein—surface interactions in the presence of polyethylene oxide. I. Simplified theory. Journal of Colloid and Interface Science. 1991, 142: 149–158

    Article  CAS  Google Scholar 

  65. Zhao C, Li L, Wang Q, Yu Q, Zheng J. Effect of film thickness on the antifouling performance of poly (hydroxy-functional methacrylates) grafted surfaces. Langmuir. 2011, 27: 4906–4913

    Article  CAS  Google Scholar 

  66. Lin N J, Yang H S, Chang Y, Tung K L, Chen W H, Cheng H W, Hsiao S W, Aimar P, Yamamoto K, Lai J Y. Surface selfassembled pegylation of fluoro-based pvdf membranes via hydrophobic-driven copolymer anchoring for ultra-stable biofouling resistance. Langmuir. 2013, 29: 10183–10193

    Article  CAS  Google Scholar 

  67. Li M, Neoh K G, Xu L Q, Wang R, Kang E T, Lau T, Olszyna D P, Chiong E. Surface modification of silicone for biomedical applications requiring long-term antibacterial, antifouling, and hemocompatible properties. Langmuir. 2012, 28: 16408–16422

    Article  CAS  Google Scholar 

  68. Yang W J, Cai T, Neoh K G, Kang E T, Teo S L M, Rittschof D. Barnacle cement as surface anchor for “clicking” of antifouling and antimicrobial polymer brushes on stainless steel. Biomacromolecules. 2013, 14: 2041–2051

    Article  CAS  Google Scholar 

  69. Weber T, Bechthold M, Winkler T, Dauselt J, Terfort A. Direct grafting of anti-fouling polyglycerol layers to steel and other technically relevant materials. Colloids and Surfaces. B, Biointerfaces. 2013, 111: 360–366

    Article  CAS  Google Scholar 

  70. Kuroki H, Tokarev I, Nykypanchuk D, Zhulina E, Minko S. Stimuli-responsive materials with self-healing antifouling surface via 3d polymer grafting. Advanced Functional Materials. 2013, 23: 4593–4600

    Article  CAS  Google Scholar 

  71. Ekblad T, Bergstrm G, Ederth T, Conlan S L, Mutton R, Clare A S, Wang S, Liu Y, Zhao Q, D’Souza F. Poly (ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments. Biomacromolecules. 2008, 9: 2775–2783

    Article  CAS  Google Scholar 

  72. Mi L, Jiang S. Integrated antimicrobial and nonfouling zwitterionic polymers. Angewandte Chemie International Edition. 2014, 53: 1746–1754

    Article  CAS  Google Scholar 

  73. Ishihara K, Fukumoto K, Iwasaki Y, Nakabayashi N. Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2._Protein adsorption and platelet adhesion. Biomaterials, 1999, 20: 1553–1559

    Article  CAS  Google Scholar 

  74. Iwasaki Y, Sawada S, Ishihara K, Khang G, Lee H B. Reduction of surface-induced inflammatory reaction on plga/mpc polymer blend. Biomaterials. 2002, 23: 3897–3903

    Article  CAS  Google Scholar 

  75. Chang Y, Liao S C, Higuchi A, Ruaan R C, Chu C W, Chen W Y. A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion. Langmuir. 2008, 24: 5453–5458

    Article  CAS  Google Scholar 

  76. West S L, Salvage J P, Lobb E J, Armes S P, Billingham N C, Lewis A L, Hanlon G W, Lloyd A W. The biocompatibility of crosslinkable copolymer coatings containing sulfobetaines and phosphobetaines. Biomaterials. 2004, 25: 1195–1204

    Article  CAS  Google Scholar 

  77. Zhang Z, Zhang M, Chen S, Horbett T A, Ratner B D, Jiang S. Blood compatibility of surfaces with superlow protein adsorption. Biomaterials. 2008, 29: 4285–4291

    Article  CAS  Google Scholar 

  78. Holmlin R E, Chen X, Chapman R G, Takayama S, Whitesides G M. Zwitterionic sams that resist nonspecific adsorption of protein from aqueous buffer. Langmuir. 2001, 17: 2841–2850

    Article  CAS  Google Scholar 

  79. Shengfu Chen Z C, Jiang S. Ultra-low fouling peptide surfaces derived from natural amino acids. Biomaterials. 2009, 30: 5892–5896

    Article  CAS  Google Scholar 

  80. Chen S, Li L, Zhao C, Zheng J. Surface hydration. Principles and applications toward low-fouling/nonfouling biomaterials. Polymer. 2010, 51: 5283–5293

    Article  CAS  Google Scholar 

  81. Jiang S, Cao Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Advanced Materials. 2010, 22: 920–932

    Article  CAS  Google Scholar 

  82. Cao Z, Jiang S. Super-hydrophilic zwitterionic poly(carboxybetaine) and amphiphilic non-ionic poly(ethylene glycol) for stealth nanoparticles. Nano Today. 2012, 7: 404–413

    Article  CAS  Google Scholar 

  83. Keefe A J, Jiang S. Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nature Chemistry. 2012, 4: 59–63

    Article  CAS  Google Scholar 

  84. Ji J, Zhu H, Shen J. Surface tailoring of poly(dl-lactic acid) by ligand-tethered amphiphilic polymer for promoting chondrocyte attachment and growth. Biomaterials. 2004, 25: 1859–1867

    Article  CAS  Google Scholar 

  85. Leng C, Han X, Shao Q, Zhu Y, Li Y, Jiang S, Chen Z. In situ probing of the surface hydration of zwitterionic polymer brushes: Structural and environmental effects. Journal of Physical Chemistry C. 2014, 118: 15840–15845

    Article  CAS  Google Scholar 

  86. McRae Page S, Henchey E, Chen X, Schneider S, Emrick T. Efficacy of polympc-dox prodrugs in 4t1 tumor-bearing mice. Molecular Pharmaceutics. 2014, 11: 1715–1720

    Article  CAS  Google Scholar 

  87. Disabb-Miller M L, Zha Y, DeCarlo A J, Pawar M, Tew G N, Hickner M A. Water uptake and ion mobility in cross-linked bis (terpyridine)ruthenium-based anion exchange membranes. Macromolecules. 2013, 46: 9279–9287

    Article  CAS  Google Scholar 

  88. Ye S H, Hong Y, Sakaguchi H, Shankarraman V, Luketich S K, D'Amore A, Wagner W R. Nonthrombogenic, biodegradable elastomeric polyurethanes with variable sulfobetaine content. ACS Applied Materials & Interfaces. 2014, 6: 22796–22806

    Article  CAS  Google Scholar 

  89. Hook A L, Chang C Y, Yang J, Luckett J, Cockayne A, Atkinson S, Mei Y, Bayston R, Irvine D J, Langer R. Combinatorial discovery of polymers resistant to bacterial attachment. Nature Biotechnology. 2012, 30: 868–875

    Article  CAS  Google Scholar 

  90. Hook A L, Chang C Y, Yang J, Atkinson S, Langer R, Anderson D G, Davies M C, Williams P, Alexander M R. Discovery of novel materials with broad resistance to bacterial attachment using combinatorial polymer microarrays. Advanced Materials. 2013, 25: 2542–2547

    Article  CAS  Google Scholar 

  91. Bjarnsholt T, Ciofu O, Molin S, Givskov M, Hoiby N. Applying insights from biofilm biology to drug development—Can a new approach be developed? Nature Reviews. Drug Discovery. 2013, 12: 791–808

    Article  CAS  Google Scholar 

  92. Klibanov A M. Permanently microbicidal materials coatings. Journal of Materials Chemistry. 2007, 17: 2479–2482

    Article  CAS  Google Scholar 

  93. Zou P, Hartleb W, Lienkamp K. It takes walls and knights to defend a castle—synthesis of surface coatings from antimicrobial and antibiofouling polymers. Journal of Materials Chemistry. 2012, 22: 19579–19589

    Article  CAS  Google Scholar 

  94. Brogden K A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nature Reviews. Microbiology. 2005, 3: 238–250

    Article  CAS  Google Scholar 

  95. Arciola C R, Montanaro L, Caramazza R, Sassoli V, Cavedagna D. Inhibition of bacterial adherence to a high-water-content polymer by a water-soluble, nonsteroidal, anti-inflammatory drug. Journal of Biomedical Materials Research. 1998, 42: 1–5

    Article  CAS  Google Scholar 

  96. Cheng G, Xue H, Li G, Jiang S. Integrated antimicrobial and nonfouling hydrogels to inhibit the growth of planktonic bacterial cells and keep the surface clean. Langmuir. 2010, 26: 10425–10428

    Article  CAS  Google Scholar 

  97. Ratte H T. Bioaccumulation and toxicity of silver compounds: A review. Environmental Toxicology and Chemistry. 1999, 18: 89–108

    Article  CAS  Google Scholar 

  98. Follmann H D M, Martins A F, Gerola A P, Burgo T A L, Nakamura C V, Rubira A F, Muniz E C. Antiadhesive and antibacterial multilayer films via layer-by-layer assembly of tmc/heparin complexes. Biomacromolecules. 2012, 13: 3711–3722

    Article  CAS  Google Scholar 

  99. Wong S Y, Han L, Timachova K, Veselinovic J, Hyder M N, Ortiz C, Klibanov A M, Hammond P T. Drastically lowered protein adsorption on microbicidal hydrophobic/hydrophilic polyelectrolyte multilayers. Biomacromolecules. 2012, 13: 719–726

    Article  CAS  Google Scholar 

  100. Zhuk I, Jariwala F, Attygalle A B, Wu Y, Libera M R, Sukhishvili S A. Self-defensive layer-by-layer films with bacteria-triggered antibiotic release. ACS Nano. 2014, 8: 7733–7745

    Article  CAS  Google Scholar 

  101. Shukla A, Fleming K E, Chuang H F, Chau T M, Loose C R, Stephanopoulos G N, Hammond P T. Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials. 2010, 31: 2348–2357

    Article  CAS  Google Scholar 

  102. Fu J, Ji J, Yuan W, Shen J. Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials. 2005, 26: 6684–6692

    Article  CAS  Google Scholar 

  103. Cheng G, Xue H, Zhang Z, Chen S, Jiang S. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angewandte Chemie International Edition. 2008, 47: 8831–8834

    Article  CAS  Google Scholar 

  104. Wang B L, Ren K F, Chang H, Wang J L, Ji J. Construction of degradable multilayer films for enhanced antibacterial properties. ACS Applied Materials & Interfaces. 2013, 5: 4136–4143

    CAS  Google Scholar 

  105. Cao Z, Brault N, Xue H, Keefe A, Jiang S. Manipulating sticky and non-sticky properties in a single material. Angewandte Chemie. 2011, 50: 6102–6104

    Article  CAS  Google Scholar 

  106. Cao Z, Mi L, Mendiola J, Ella-Menye J R, Zhang L, Xue H, Jiang S. Reversibly switching the function of a surface between attacking and defending against bacteria. Angewandte Chemie. 2012, 51: 2602–2605

    Article  CAS  Google Scholar 

  107. Cao B, Tang Q, Li L, Humble J, Wu H, Liu L, Cheng G. Switchable antimicrobial and antifouling hydrogels with enhanced mechanical properties. Advanced Healthcare Materials. 2013, 2: 1096–1102

    Article  CAS  Google Scholar 

  108. Cao B, Li L, Tang Q, Cheng G. The impact of structure on elasticity, switchability, stability and functionality of an all-in-one carboxybetaine elastomer. Biomaterials. 2013, 34: 7592–7600

    Article  CAS  Google Scholar 

  109. Yu Q, Cho J, Shivapooja P, Ista L K, López G P. Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria. ACS Applied Materials & Interfaces. 2013, 5: 9295–9304

    Article  CAS  Google Scholar 

  110. Azzaroni O, Moya S, Farhan T, Brown A A, Huck W T S. Switching the properties of polyelectrolyte brushes via “hydrophobic collapse”. Macromolecules. 2005, 38: 10192–10199

    Article  CAS  Google Scholar 

  111. Shen Y, Zhang Y, Zhang Q, Niu L, You T, Ivaska A. Immobilization of ionic liquid with polyelectrolyte as carrier. Chemical Communications. 2005, 2005: 4193–4195

    Article  CAS  Google Scholar 

  112. Wang L, Lin Y, Su Z. Counterion exchange at the surface of polyelectrolyte multilayer film for wettability modulation. Soft Matter. 2009, 5: 2072–2078

    Article  CAS  Google Scholar 

  113. Wei Q, Cai M, Zhou F, Liu W. Dramatically tuning friction using responsive polyelectrolyte brushes. Macromolecules. 2013, 46: 9368–9379

    Article  CAS  Google Scholar 

  114. Huang C J, Chen Y S, Chang Y. Counterion-activated nanoactuator: Reversibly switchable killing/releasing bacteria on polycation brushes. ACS Applied Materials & Interfaces. 2015, 7: 2415–2423

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Cao.

Additional information

Dedicated to the 120th Anniversary of Tianjin University

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Yue, Z., Wang, W. et al. Strategies on designing multifunctional surfaces to prevent biofilm formation. Front. Chem. Sci. Eng. 9, 324–335 (2015). https://doi.org/10.1007/s11705-015-1529-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-015-1529-z

Keywords

Navigation