Skip to main content
Log in

Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void pore

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Magnetic Fe3O4 and mesoporous silica core-shell nanospheres with tunable size from 110–800 nm were synthesized via a one step self-assembly method. The morphological, structural, textural, and magnetic properties were well-characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, N2 adsorption-desorption and magnetometer. These nanocomposites, which possess high surface area, large pore volume and well-defined pore size, exhibit two dimensional hexagonal (P6mm) mesostructures. Interestingly, magnetic core and mesoporous silica shell nanocomposites with large void pore (20 nm) on the shell were generated by increasing the ratio of ethanol/water. Additionally, the obtained nanocomposites combined magnetization response and large void pore, implying the possibility of applications in drug/gene targeting delivery. The cell internalization capacity of NH2-functionalized nanocomposites in the case of cancer cells (HeLa cells) was exemplified to demonstrate their nano-medicine application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu A H, Schmidt W, Matoussevitch N, Bonnemann H, Spliethoff B, Tesche B, Bill E, Kiefer W, Schuth F. Nanoengineering of a magnetically separable hydrogenation catalyst. Angewandte Chemie International Edition, 2004, 43(33): 4303–4306

    Article  CAS  Google Scholar 

  2. Liu J, Qiao S Z, Hu Q H, Lu G Q. Magnetic nanocomposites with mesoporous structures: Synthesis and applications. Small, 2011, 7(4): 425–443

    Article  CAS  Google Scholar 

  3. Guerrero-Martínez A, Pérez-Juste J, Liz-Marzán L M. Recent progress on silica coating of nanoparticles and related nanomaterials. Advanced Materials, 2010, 22(11): 1182–1195

    Article  Google Scholar 

  4. Wu P G, Zhu J H, Xu Z H. Template-assisted synthesis of mesoporous magnetic nanocomposite particles. Advanced Functional Materials, 2004, 14(4): 345–351

    Article  CAS  Google Scholar 

  5. Yi D K, Lee S S, Papaefthymiou G C, Ying J Y. Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chemistry of Materials, 2006, 18(3): 614–619

    Article  CAS  Google Scholar 

  6. Kim J, Lee J E, Lee J, Yu J H, Kim B C, An K, Hwang Y, Shin C H, Park J G, Hyeon T. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. Journal of the American Chemical Society, 2006, 128(3): 688–689

    Article  CAS  Google Scholar 

  7. Kim J, Kim H S, Lee N, Kim T, Kim H, Yu T, Song I C, Moon W K, Hyeon T. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angewandte Chemie International Edition, 2008, 47(44): 8438–8441

    Article  CAS  Google Scholar 

  8. Liong X, Lu J, Kovochich M, Xia T, Ruehm S G, Nel A E, Tamanoi F, Zink J I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano, 2008, 2(5): 889–896

    Article  CAS  Google Scholar 

  9. Zhang L, Qiao S Z, Jin Y G, Yang H G, Budihartono S, Stahr F, Yan Z F, Wang X L, Hao Z P, Lu G Q. Fabrication and size-selective bioseparation of magnetic silica nanospheres with highly ordered periodic mesostructure. Advanced Functional Materials, 2008, 18(20): 3203–3212

    Article  CAS  Google Scholar 

  10. Lin Y S, Haynes C L. Synthesis and characterization of biocompatible and size-tunable multifunctional porous silica nanoparticles. Chemistry of Materials, 2009, 21(17): 3979–3986

    Article  CAS  Google Scholar 

  11. Ruiz-Hernandez E, Lopez-Noriega A, Arcos D, Izquierdo-Barba I, Terasaki O, Vallet-Regi M. Aerosol-assisted synthesis of magnetic mesoporous silica spheres for drug targeting. Chemistry of Materials, 2007, 19(14): 3455–3463

    Article  CAS  Google Scholar 

  12. Zhang L, Zhang F, Dong W F, Song J F, Huo Q S, Sun H B. Magnetic-mesoporous Janus nanoparticles. Chemical Communications, 2011, 47(4): 1225–1227

    Article  CAS  Google Scholar 

  13. Zhao Y, Lin L N, Lu Y, Gao H L, Chen S F, Yang P, Yu S H. Synthesis of tunable theranostic Fe3O4@mesoporous silica nanospheres for biomedical applications. Advanced Healthcare Materials, 2012, 1(3): 327–331

    Article  CAS  Google Scholar 

  14. Liu Q, Zhang J X, Xia W L, Gu H C. Magnetic field enhanced cell uptake efficiency of magnetic silica mesoporous nanoparticles. Nanoscale, 2012, 4(11): 3415–3421

    Article  CAS  Google Scholar 

  15. Liu J, Wang B, Hartono S B, Liu T T, Kantharidis P, Middelberg A P J, Lu G Q, He L Z, Qiao S Z. Magnetic silica spheres with large nanopores for nucleic acid adsorption and cellular uptake. Biomaterials, 2012, 33(3): 970–978

    Article  CAS  Google Scholar 

  16. Wan Y, Zhao D Y. On the controllable soft-templating approach to mesoporous silicates. Chemical Reviews, 2007, 107(7): 2821–2860

    Article  CAS  Google Scholar 

  17. Deng Y, Qi D, Deng C, Zhang X, Zhao D Y. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. Journal of the American Chemical Society, 2008, 130(1): 28–29

    Article  CAS  Google Scholar 

  18. Wang P, Shi Q H, Shi Y F, Clark K K, Stucky G D, Keller A A. Magnetic permanently confined micelle arrays for treating hydrophobic organic compound contamination. Journal of the American Chemical Society, 2009, 131(1): 182–188

    Article  CAS  Google Scholar 

  19. Hartono S B, Gu W Y, Kleitz F, Liu J, He L Z, Middelberg A P J, Yu C Z, Lu G Q, Qiao S Z. Poly-L-lysine functionalized large pore cubic mesostructured silica nanoparticles as biocompatible carriers for gene delivery. ACS Nano, 2012, 6(3): 2104–2117

    Article  CAS  Google Scholar 

  20. Na H K, Kim M H, Park K, Ryoo R S, Lee K E, Jeon H, Ryoo R, Hyeon C B, Min D H. Efficient functional delivery of siRNA using mesoporous silica nanoparticles with ultralarge pores. Small, 2012, 8(11): 1752–1761

    Article  CAS  Google Scholar 

  21. Huang X L, Li L L, Liu T L, Hao N J, Liu H Y, Chen D, Tang F Q. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano, 2011, 5(7): 5390–5399

    Article  CAS  Google Scholar 

  22. Zhao W R, Zhang H T, Chang S, Gu J L, Li Y S, Li L, Shi J L. An organosilane route to mesoporous silica nanoparticles with tunable particle and pore sizes and their anticancer drug delivery behavior. RSC Advances, 2012, 2(12): 5105–5107

    Article  CAS  Google Scholar 

  23. Chen Z T, Niu D C, Li Y S, Shi J L. One-step approach to synthesize hollow mesoporous silica spheres co-templated by an amphiphilic block copolymer and cationic surfactant. RSC Advances, 2013, 3(19): 6767–6770

    Article  CAS  Google Scholar 

  24. Niu D C, Ma Z, Li Y S, Shi J L. Synthesis of core-shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness. Journal of the American Chemical Society, 2010, 132(43): 15144–15147

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaomin Liu or Shi Zhang Qiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Liu, L., Liu, J. et al. Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void pore. Front. Chem. Sci. Eng. 8, 114–122 (2014). https://doi.org/10.1007/s11705-014-1413-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-014-1413-2

Keywords

Navigation