Skip to main content
Log in

Heterogeneous liquid phase oxidation of ethylbenzene to acetophenone with graphene carbon-based catalyst

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The series of graphene materials and N-doped graphene materials were successfully synthesized and improved by high-temperature treatment with trace iron oxide. XRD, Raman, FT-IR, TEM and XPS were employed for these catalysts. The catalytic performance of these catalysts was investigated in the selective oxidation of ethylbenzene with tert-butyl hydroperoxide as oxidant. The impacts of temperature, mass of catalysts, reaction time and oxidants on the selective oxidation of ethylbenzene were also investigated. The N-doped graphene materials exhibit greatly remarkable catalytic performance than others. The conversion of ethylbenzene is more than 90% and the selectivity of acetophenone is more than 95% at 353 K. Graphene can be used as catalyst owing to its unique structures and chemical properties. The characterization tests show that the doping of N atoms can create more defects and more active sites in the N-doped graphene materials which could greatly improve the catalytic performance. Furthermore, such cost-effective graphene-based catalysts possess good stability and could be reused at least five times without remarkable loss of the catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barkade SS et al (2013) Ultrasound assisted miniemulsion polymerization for preparation o of polypyrrole–zinc oxide (PPy/ZnO) functional latex for liquefied petroleum gas sensing. Ind Eng Chem Res 52:7704–7712. https://doi.org/10.1021/ie301698g

    Article  CAS  Google Scholar 

  • Dapurkar SE, Kawanami H, Yokoyama T, Ikushima Y (2009) Solvent-free selective oxidation of benzylic compounds over chromium containing mesoporous molecular sieve catalyst at 1 atm O2. Catal Commun 10:1025–1028

    Article  CAS  Google Scholar 

  • Faraji AR, Mosazadeh S, Ashouri F (2017) Synthesis and characterization of cobalt-supported catalysts on modified magnetic nanoparticle: green and highly efficient heterogeneous nanocatalyst for selective oxidation of ethylbenzene, cyclohexene and oximes with molecular oxygen. J Colloid Interface Sci 506:10–26. https://doi.org/10.1016/j.jcis.2017.06.100

    Article  CAS  PubMed  Google Scholar 

  • Gao YJ et al (2013) Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation. Angew Chem Int Ed 52:2109–2113. https://doi.org/10.1002/anie.201207918

    Article  CAS  Google Scholar 

  • Gao B, Meng S, Yang X (2015) Synchronously synthesizing and immobilizing N-hydroxyphthalimide on polymer microspheres and catalytic performance of solid catalyst in oxidation of ethylbenzene by molecular oxygen. Org Process Res Dev 19:1374–1382. https://doi.org/10.1021/acs.oprd.5b00108

    Article  CAS  Google Scholar 

  • George K, Sugunan S (2008) Nickel substituted copper chromite spinels: preparation, characterization and catalytic activity in the oxidation reaction of ethylbenzene. Catal Commun 9:2149–2153

    Article  CAS  Google Scholar 

  • Ghiaci M, Sadeghi Z, Sedaghat M, Karimi-Maleh H, Safaei-Ghomi J, Gil A (2010) Preparation of Pd(0) and Pd(II) nanotubes and nanoparticles on modified bentonite and their catalytic activity in oxidation of ethyl benzene to acetophenone. Appl Catal A Gen 381:121–131

    Article  CAS  Google Scholar 

  • Guo CC, Peng QJ, Liu Q, Jiang GF (2003) Selective oxidation of ethylbenzene with air catalyzed by simple μ-oxo dimeric metalloporphyrins under mild conditions in the absence of additives. J Mol Catal A Chem 192:295–302

    Article  CAS  Google Scholar 

  • Guo ZC et al (2012) Iron phthalocyanine/TiO2 nanofiber heterostructures with enhanced visible photocatalytic activity assisted with H2O2. J Hazard Mater 219–220:156–163

    Article  CAS  PubMed  Google Scholar 

  • Gutmann B, Elsner P, Roberge D, Kappe CO (2013) Homogeneous liquid-phase oxidation of ethylbenzene to acetophenone in continuous flow mode. ACS Catal 3:2669–2676. https://doi.org/10.1021/cs400571y

    Article  CAS  Google Scholar 

  • Han YQ (2009) Synthesis and characterization of montmorillonite/polypyrrole nanocomposite. Polym Compos 30:66–69. https://doi.org/10.1002/pc.20534

    Article  CAS  Google Scholar 

  • Heidari M, Sedrpoushan A, Mohannazadeh F (2017) Selective oxidation of benzylic C–H using nanoscale graphene oxide as highly efficient carbocatalyst: direct synthesis of terephthalic acid. Org Process Res Dev 21:641–647. https://doi.org/10.1021/acs.oprd.7b00056

    Article  CAS  Google Scholar 

  • Hou ZS, Jin YJ, Xi X, Huang T, Wu DQ, Xu PM, Liu RL (2017) Hierarchically porous nitrogen-doped graphene aerogels as efficient metal-free oxygen reduction catalysts. J Colloid Interface Sci 488:317–321. https://doi.org/10.1016/j.jcis.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  • Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  • Jack RS, Ayoko GA, Adebajo MO, Frost RL (2015) A review of iron species for visible-light photocatalytic water purification. Environ Sci Pollut Res 22:7439–7449

    Article  CAS  Google Scholar 

  • Jahan M, Bao Q, Loh KP (2012) Electrocatalytically active graphene–porphyrin MOF composite for oxygen reduction reaction. J Am Chem Soc 134:6707–6713

    Article  CAS  PubMed  Google Scholar 

  • Jie S, Chen Y, Yang C, Lin X, Zhu R, Liu Z (2017) Co–N–C catalysts supported on mesoporous carbon with tailorable pore sizes for selective oxidation of arylalkanes. Catal Commun 100:144–147. https://doi.org/10.1016/j.catcom.2017.06.039

    Article  CAS  Google Scholar 

  • Jin HL, Huang HH, He YH, Feng X, Wang S, Dai LM, Wang JC (2015) Graphene quantum dots supported by graphene nanoribbons with ultrahigh electrocatalytic performance for oxygen reduction. J Am Chem Soc 137:7588–7591

    Article  CAS  PubMed  Google Scholar 

  • Kawashima Y et al (2015) Near-Infrared photoelectrochemical conversion via photoinduced charge separation in supramolecular complexes of anionic phthalocyanines with Li(+)@C60. J Phys Chem B 119:7690–7697

    Article  CAS  PubMed  Google Scholar 

  • Keshipour S, Adak K (2017) Magnetic d-penicillamine-functionalized cellulose as a new heterogeneous support for cobalt(II) in green oxidation of ethylbenzene to acetophenone. Appl Organomet Chem 31:e3774. https://doi.org/10.1002/aoc.3774

    Article  CAS  Google Scholar 

  • Khomane SB, Doke DS, Dongare MK, Halligudi SB, Umbarkar SB (2017) Efficient oxidation of ethyl benzene using in situ generated molybdenum acetylide oxo-peroxo complex as recyclable catalyst. Appl Catal A: Gen 531:45–51. https://doi.org/10.1016/j.apcata.2016.12.003

    Article  CAS  Google Scholar 

  • Li XG, Wang J, He R (2007) Selective oxidation of ethylbenzene catalyzed by fluorinated metalloporphyrins with molecular oxygen. Chin Chem Lett 18:1053–1056

    Article  CAS  Google Scholar 

  • Long JL, Xie XQ, Xu J, Gu Q, Chen LM, Wang XX (2012) Nitrogen-doped graphene nanosheets as metal-free catalysts for aerobic selective oxidation of benzylic alcohols. ACS Catal 2:622–631. https://doi.org/10.1021/cs3000396

    Article  CAS  Google Scholar 

  • Luo DC, Zhang GX, Liu JF, Sun XM (2011) Evaluation criteria for reduced graphene oxide. J Phys Chem C 115:11327–11335

    Article  CAS  Google Scholar 

  • Luo L, Liu H, Li GY, Hu CW (2016) Partial oxidation of ethylbenzene by H2O2 on VOx/HZSM-22 catalyst. RSC Adv 6:55463–55471. https://doi.org/10.1039/c6ra05906f

    Article  CAS  Google Scholar 

  • Mackintosh HJ, Budd PM, Mckeown NB (2007) Catalysis by microporous phthalocyanine and porphyrin network polymers. J Mater Chem 18:573–578

    Article  Google Scholar 

  • Majid K, Tabassum R, Shah AF, Ahmad S, Singla ML (2008) Comparative study of synthesis, characterization and electric properties of polypyrrole and polythiophene composites with tellurium oxide. J Mater Sci Mater Electron 20:958–966. https://doi.org/10.1007/s10854-008-9817-8

    Article  CAS  Google Scholar 

  • Oliveira APS et al (2017) Catalytic performance of MnFeSi composite in selective oxidation of styrene, ethylbenzene and benzyl alcohol. Mol Catal 436:29–42. https://doi.org/10.1016/j.mcat.2017.04.007

    Article  CAS  Google Scholar 

  • Pan X, Zhao Y, Liu S, Korzeniewski CL, Wang S, Fan ZY (2012) Comparing graphene–TiO2 nanowire and graphene–TiO2 nanoparticle composite photocatalysts. ACS Appl Mater Inter 4:3944–3950

    Article  CAS  Google Scholar 

  • Qiu Y, Yang C, Huo J, Liu Z (2016) Synthesis of Co–N–C immobilized on carbon nanotubes for ethylbenzene oxidation. J Mol Catal A Chem 424:276–282. https://doi.org/10.1016/j.molcata.2016.09.011

    Article  CAS  Google Scholar 

  • Renuka Maldepalli K, Virupaiah G (2016) A polymer-anchored cobalt(II) complex as a reusable catalyst for oxidation of benzene, ethylbenzene and cyclohexane. Transit Met Chem 42:25–34. https://doi.org/10.1007/s11243-016-0102-z

    Article  CAS  Google Scholar 

  • Rodríguez-Reinoso F (1998) The role of carbon materials in heterogeneous catalysis. Carbon 36:159–175

    Article  Google Scholar 

  • Sheng Z-H, Shao L, Chen J-J, Bao W-J, Wang F-B, Xia X-H (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5:4350–4358

    Article  CAS  PubMed  Google Scholar 

  • Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  CAS  PubMed  Google Scholar 

  • Su X-L, Cheng M-Y, Fu L, Zheng G-P, Zheng X-C, Yang J-H, Guan X-X (2017a) Facile synthesis of 3D nitrogen-doped graphene aerogel nanomeshes with hierarchical porous structures for applications in high-performance supercapacitors. New J Chem 41:5291–5296. https://doi.org/10.1039/c7nj00440k

    Article  CAS  Google Scholar 

  • Su X-L, Fu L, Cheng M-Y, Yang J-H, Guan X-X, Zheng X-C (2017b) 3D nitrogen-doped graphene aerogel nanomesh: facile synthesis and electrochemical properties as the electrode materials for supercapacitors. Appl Surf Sci 426:924–932. https://doi.org/10.1016/j.apsusc.2017.07.251

    Article  CAS  Google Scholar 

  • Subrahmanyam KS, Panchakarla LS, Govindaraj A, Rao CNR (2009) Simple method of preparing graphene flakes by an arc-discharge method. J Phys Chem C 113:4257–4259

    Article  CAS  Google Scholar 

  • Ustavytska O, Kurys Y, Koshechko V, Pokhodenko V (2017) One-step electrochemical preparation of multilayer graphene functionalized with nitrogen. Nanoscale Res Lett 12:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visuvamithiran P, Shanthi K, Palanichamy M, Murugesan V (2013) Direct synthesis of Mn–Ti-SBA-15 catalyst for the oxidation of ethylbenzene. Catal Sci Technol 3:2340–2358. https://doi.org/10.1039/c3cy00306j

    Article  CAS  Google Scholar 

  • Wang QL, Li HY, Yang JH, Sun Q, Li QY, Yang J (2016) Iron phthalocyanine–graphene donor–acceptor hybrids for visible-light-assisted degradation of phenol in the presence of H2O2. Appl Catal B Environ 192:182–192

    Article  CAS  Google Scholar 

  • Wang BW, Si LL, Geng JY, Su YH, Li Y, Yan XL, Chen LG (2017) Controllable magnetic 3D nitrogen-doped graphene gel: synthesis, characterization, and catalytic performance. Appl Catal B Environ 204:316–323. https://doi.org/10.1016/j.apcatb.2016.11.042

    Article  CAS  Google Scholar 

  • Wei ZZ, Gong YT, Xiong TY, Zhang PF, Li HR, Wang Y (2014) Highly efficient and chemoselective hydrogenation of α,β-unsaturated carbonyls over Pd/N-doped hierarchically porous carbon. Catal Sci Technol 5:397–404

    Article  CAS  Google Scholar 

  • Wu ZS, Yang SB, Sun Y, Parvez K, Feng XL, Müllen K (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4. J Am Chem Soc 134:9082–9085. https://doi.org/10.1021/ja3030565

    Article  CAS  PubMed  Google Scholar 

  • Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41:782–796

    Article  CAS  PubMed  Google Scholar 

  • Xiong HF, Jewell LL, Coville NJ (2015) Shaped carbons as supports for the catalytic conversion of syngas to clean fuels. ACS Catal 5:2640–2658

    Article  CAS  Google Scholar 

  • Yan XB, Chen JT, Yang J, Xue QJ, Miele P (2010) Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide–polyaniline and graphene–polyaniline hybrid papers. ACS Appl Mater Interfaces 2:2521–2529

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Li Q, Li LS (2012) Formation and stabilization of palladium nanoparticles on colloidal graphene quantum dots. J Am Chem Soc 134:16095–16098

    Article  CAS  PubMed  Google Scholar 

  • Zhang JL, Yang HJ, Shen GX, Cheng P, Zhang JY, Guo SW (2010) Reduction of graphene oxide via l-ascorbic acid. Chem Commun 46:1112–1114

    Article  CAS  Google Scholar 

  • Zhao Y, Hu CG, Long S, Wang LX, Shi GQ, Dai LM, Qu LT (2014) Functional graphene nanomesh foam. Energy Environ Sci 7:1913–1918. https://doi.org/10.1039/c4ee00106k

    Article  CAS  Google Scholar 

  • Zhao QM, Chen KX, Zhang WS, Yao J, Li HR (2015) Efficient metal-free oxidation of ethylbenzene with molecular oxygen utilizing the synergistic combination of NHPI analogues. J Mol Catal A Chem 402:79–82. https://doi.org/10.1016/j.molcata.2015.03.017

    Article  CAS  Google Scholar 

  • Zhou XJ, Tang S, Yin Y, Sun SH, Qiao JL (2016) Hierarchical porous N-doped graphene foams with superior oxygen reduction reactivity for polymer electrolyte membrane fuel cells. Appl Energy 175:459–467. https://doi.org/10.1016/j.apenergy.2016.03.066

    Article  CAS  Google Scholar 

  • Zhu X, Song X, Ma XL, Ning GQ (2014) Enhanced electrode performance of Fe2O3 nanoparticle-decorated nanomesh graphene as anodes for lithium-ion batteries. ACS Appl Mater Interfaces 6:7189–7197. https://doi.org/10.1021/am500323v

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is based in part upon work supported by the National Natural Science Foundation of China (Grant no. 21403053) and the Joint Funds of the National Natural Science Foundation of China (Grant no. U1404503). We thank the Modern Analysis and Computing Center of Zhengzhou University for the characterization test.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Gao or Jing-He Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 681 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Song, X., Gao, L. et al. Heterogeneous liquid phase oxidation of ethylbenzene to acetophenone with graphene carbon-based catalyst. Chem. Pap. 72, 2203–2214 (2018). https://doi.org/10.1007/s11696-018-0432-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-018-0432-8

Keywords

Navigation