Skip to main content

Advertisement

Log in

The Effects of Liposuction Removal of Subcutaneous Abdominal Fat on Lipid Metabolism are Independent of Insulin Sensitivity in Normal-Overweight Individuals

  • Research Article
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Abdominal fat (both visceral and subcutaneous) accumulation is associated with an increased risk of developing insulin resistance. The latter stands as the basis upon which diabetes, hypertension, and atherogenic dyslipidemia tend to build up. Hence, abdominal liposuction (AL) could theoretically hold metabolic benefits. We undertook the present study to assess the effects of AL on carbohydrate and lipid metabolism.

Methods

This is a prospective study including 20 healthy volunteers (M2/F18) aged 39.6 ± 7.7 years old (24–52), body mass index (BMI) = 25.3 ± 4.7 kg/m2 (19.8–36) who underwent AL. Before and 4 months after AL, we measured glucose and insulin concentrations, HOMA index [glucose (mM) × IRI (μUI/l)/22.5], free fatty acids (FFA), glycerol, total cholesterol and triglycerides, high-density lipoprotein (HDL)-cholesterol (HDL-c), low-density lipoprotein (LDL)-cholesterol (LDL-c), very low-density lipoprotein (VLDL)-cholesterol (VLDL-c) and apolipoproteins (apo) B, AI and AII, adiponectin (Adp), and ultra-sensitive C-reactive protein (CRP).

Results

Lipo-aspirate averaged 5.494 ± 5.297 cc (600–19.000). Weight, BMI, and waist circumference decreased significantly 4 months after surgery by 4.6, 4.6 and 5.9%, respectively. There were significant decrements in FFA (−35%, p < 0.0001), glycerol (−63%, p < 0.0005), VLDL-c (−15.2%; p < 0.001), and triglycerides (−21.3%, p < 0.002), an increase in HDL-c (+10%, p < 0.03), Apo AI (+10.1%, p < 0.02), and Apo AII (+11.8%, p < 0.001). Total cholesterol, LDL-c, ApoB, and the LDL-c/ApoB ratio raised by +15% (p < 0.0005), +27.3% (p < 0.000), +15.1% (p < 0.008) and +2.76% (p < 0.008), respectively. Glucose, insulin, the HOMA index, Adp, and CRP were not significantly altered after AL.

Conclusion

AL in healthy normal weight or slightly overweight subjects improves the major lipoprotein components of obesity-associated dyslipidemia. This improvement occurs independent of insulin sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nieves DJ, Cnop M, Retzlaff B, Walden CE, Brunzell JD, Knopp RH, Kahn SE. The atherogenic lipoprotein profile associated with obesity and insulin resistance is largely attributable to intra-abdominal fat. Diabetes. 2003;52:172–9.

    Article  PubMed  CAS  Google Scholar 

  2. Taskinen MR. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia. 2003;46:733–49.

    Article  PubMed  Google Scholar 

  3. Sparks JD, Sparks CE. Insulin regulation of triacylglycerol-rich lipoprotein synthesis and secretion. Biochem Biophys Acta. 1994;1215:9–32.

    PubMed  CAS  Google Scholar 

  4. Lewis GF, Uffelman KD, Szeto LW, Weller B, Steiner G. Interaction between free fatty acids and insulin in the acute control of very low density lipoprotein production in humans. J Clin Invest. 1995;95:158–66.

    Article  PubMed  CAS  Google Scholar 

  5. Burnett JR, Barrett PH, Vicini P, Miller DB, Telford DE, Kleinstiver SJ, Huff MW. The HMG-CoA reductase inhibitor atorvastatin increases the fractional clearance rate of postprandial triglyceride-rich lipoproteins in miniature pigs. Arterioscler Thromb Vasc Biol. 1998;18:1906–14.

    PubMed  CAS  Google Scholar 

  6. Hamsten A, Silveira A, Boquist S, Tang R, Bond MG, de Faire U, et al. The apolipoprotein CI content of triglyceride-rich lipoproteins independently predicts early atherosclerosis in healthy middle-aged men. J Am Coll Cardiol. 2005;45:1013–7.

    Article  PubMed  CAS  Google Scholar 

  7. Kissebah AH, Videlingum N, Murray R, Evans DJ, Hartz AJ, Kalkhoff RK, et al. Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab. 1982;54:254–60.

    Article  PubMed  CAS  Google Scholar 

  8. Cnop M, Landchild MJ, Vidal J, Havel PJ, Knowles NG, Carr DR, et al. The concurrent accumulation of intra-abdominal and subcutaneous fat explains the association between insulin resistance and plasma leptin concentrations: distinct metabolic effects of two fat compartments. Diabetes. 2002;51:1005–15.

    Article  PubMed  CAS  Google Scholar 

  9. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev. 2000;21:697–738.

    Article  PubMed  CAS  Google Scholar 

  10. Freedland ES. Role of a critical visceral adipose tissue threshold (CVATT) in metabolic syndrome: implications for controlling dietary carbohydrates: a review. Nutr Metab (Lond). 2004;1:12.

    Article  CAS  Google Scholar 

  11. Lambert EV, Hudson DA, Bloch CE, Koeslag JH. Metabolic response to localized surgical fat removal in nonobese women. Aesthet Plast Surg. 1991;15:105–10.

    Article  CAS  Google Scholar 

  12. Carr DB, Utzschneider KM, Hull RL, Kodama K, Retzlaff BM, Brunzell JD, et al. Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome. Diabetes. 2004;53:2087–94.

    Article  PubMed  CAS  Google Scholar 

  13. Jensen MD, Johnson CM. Contribution of leg and splanchnic free fatty acid (FFA) kinetics to postabsorptive FFA flux in men and women. Metabolism. 1996;45:662–6.

    Article  PubMed  CAS  Google Scholar 

  14. Abate N, Garg A, Peshock RM, Stray-Gundersen J, Grundy SM. Relationships of generalized and regional adiposity to insulin sensitivity in men. J Clin Invest. 1995;96:88–98.

    Article  PubMed  CAS  Google Scholar 

  15. Rendell M, Hulthen UL, Tornquist C, Groop L, Mattiasson I. Relationship between abdominal fat compartments and glucose and lipid metabolism in early postmenopausal women. J Clin Endocrinol Metab. 2001;86:744–9.

    Article  PubMed  CAS  Google Scholar 

  16. Matarasso A, Hutchinson OH. Liposuction. JAMA. 2001;285:266–8.

    Article  PubMed  CAS  Google Scholar 

  17. The American Society for Aesthetic Plastic Surgery (2002) Cosmetic Surgery National Data Bank statistics (accessed April 20, 2004 at http://www.surgery.org/press/statistics-2002.asp).

  18. Klein S, Fontana L, Young VL, Coggan AR, Kilo C, Patterson BW, Mohammed BS. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med. 2004;350:2549–57.

    Article  PubMed  CAS  Google Scholar 

  19. Hong YG, Kim HT, Seo SW, Chang CH, Rhee EJ, Lee WY. Impact of large volume liposuction on serum lipids in Orientals: a pilot study. Aesthet Plast Surg. 2006;30:327–32.

    Article  Google Scholar 

  20. Lambert EV, Hudson DA, Bloch CE, Koeslag JH. Metabolic response to localized surgical fat removal in nonobese women. Aesthet Plast Surg. 1991;15:105–10.

    Article  CAS  Google Scholar 

  21. Rizzo MR, Paolisso G, Grella R, Barbieri M, Grella E, Ragno E, et al. Is dermolipectomy effective in improving insulin action and lowering inflammatory markers in obese women? Clin Endocrinol (Oxf). 2005;63:253–8.

    Article  CAS  Google Scholar 

  22. Gonzalez-Ortiz M, Robles-Cervantes JA, Cardenas-Camarena L, Bustos-Saldana R, Martinez-Abundis E. The effects of surgically removing subcutaneous fat on the metabolic profile and insulin sensitivity in obese women after large-volume liposuction treatment. Horm Metab Res. 2002;34:446–9.

    Article  PubMed  CAS  Google Scholar 

  23. Giese SY, Bulan EJ, Commons GW, Spear SL, Yanovski JA. Improvements in cardiovascular risk profile with large-volume liposuction: a pilot study. Plast Reconstr Surg. 2001;108:510–9.

    Article  PubMed  CAS  Google Scholar 

  24. Samdal F, Birkeland KI, Ose L, Amland PF. Effect of large-volume liposuction on sex hormones and glucose- and lipid metabolism in females. Aesthet Plast Surg. 1995;19:131–5.

    Article  CAS  Google Scholar 

  25. Cazes L, Deitel M, Levine RH. Effect of abdominal lipectomy on lipid profile, glucose handling and blood pressure in patients with truncal obesity. Obes Surg. 1996;6:159–66.

    Article  Google Scholar 

  26. Giugliano G, Nicoletti G, Grella E, Giugliano F, Esposito K, Scuderi N, et al. Effect of liposuction on insulin resistance and vascular inflammatory markers in obese women. Br J Plast Surg. 2004;57:190–4.

    Article  PubMed  CAS  Google Scholar 

  27. Robles-Cervantes JA, Yanez-Diaz S, Cardenas-Camarena L. Modification of insulin, glucose and cholesterol levels in nonobese women undergoing liposuction: is liposuction metabolically safe? Ann Plast Surg. 2004;52:64–7.

    Article  PubMed  Google Scholar 

  28. Commons GW, Halperin B, Chang CC. Large-volume liposuction: a review of 631 consecutive cases over 12 years. Plast Reconstr Surg. 2001;108:1753–63.

    Article  PubMed  CAS  Google Scholar 

  29. Lambert EV, Hudson DA, Bloch CE, Koeslag JH. Metabolic response to localized surgical fat removal in nonobese women. Aesthet Plast Surg. 1991;15:105–10.

    Article  CAS  Google Scholar 

  30. Vandeweyer E. Does liposuction influence lipidogram in females: in vivo study. Aesthet Plast Surg. 2002;26:17–9.

    Google Scholar 

  31. Friedewald WT, Levy RJ, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma without the use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.

    PubMed  CAS  Google Scholar 

  32. Bjorntorp B. Metabolic implications of body fat distribution. Diabetes Care. 1991;14:1132–43.

    Article  PubMed  CAS  Google Scholar 

  33. Busetto L. Visceral obesity and the metabolic syndrome: effects of weight loss. Nutr Metab Cardiovasc Dis. 2004;11:195–204.

    Google Scholar 

  34. Goodpaster BH, Kelley DE, Wing RR, Meier A, Thaete FL. Effects of weight loss on regional fat distribution and insulin sensitivity in obesity. Diabetes. 1999;48:839–47.

    Article  PubMed  CAS  Google Scholar 

  35. Purnell JQ, Kahn SE, Albers JJ, Nevin DN, Brunzell JD, Schwartz RS. Effect of weight loss with reduction of intra-abdominal fat on lipid metabolism in older men. J Clin Endocrinol Metab. 2000;85:977–82.

    Article  PubMed  CAS  Google Scholar 

  36. Thorne A, Lonnqvist F, Apelman J, Hellers G, Arner P. A pilot study of longterm effects of a novel obesity treatment: omentectomy in connection with adjustable gastric banding. Int J Obes Relat Metab Disord. 2002;26:193–9.

    Article  PubMed  CAS  Google Scholar 

  37. Klein S, Luu K, Gasic S, Green A. Effect of weight loss on whole body and cellular lipid metabolism in severely obese humans. Am J Physiol. 1996;270:E739–E745.

    PubMed  CAS  Google Scholar 

  38. Knittle JL, Ginsberg-Fellner F. Effect of weight reduction on in vitro adipose tissue lipolysis and cellularity in obese adolescents and adults. Diabetes. 1972;21:754–61.

    PubMed  CAS  Google Scholar 

  39. Barzilai N, She L, Liu BQ, Vuguin P, Cohen P, Wang J, et al. Surgical removal of visceral fat reverses hepatic insulin resistance. Diabetes. 1999;48:94–8.

    Article  PubMed  CAS  Google Scholar 

  40. Gabriela I, Ma XH, Yang XM, Atzmon G, Rajala MW, Berg AH, et al. Removal of visceral fat prevents insulin resistance and glucose intolerance of aging: an adipokine-mediated process? Diabetes. 2002;51:2951–8.

    Article  Google Scholar 

  41. Matarasso A, Kim RW, Kral JG. The impact of liposuction on body fat. Plast Reconstr Surg. 1998;102:1686–9.

    Article  PubMed  CAS  Google Scholar 

  42. Dandona P, Weinstock R, Thusu K, Abdel-Rahman E, Aljada A, Wadden T. Tumor necrosis factor-alpha in sera of obese patients: fall with weight loss. J Metab. 1998;83:2907–10.

    CAS  Google Scholar 

  43. Goodpaster BH, Theriault R, Watkins SC, Kelley DE. Intramuscular lipid content is increased in obesity and decreased by weight loss. Metabolism. 2000;49:467–72.

    Article  PubMed  CAS  Google Scholar 

  44. Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab. 2001;86:3815–9.

    Article  PubMed  CAS  Google Scholar 

  45. Dattilo AM, Kris-Etherton PM. Effects of weight reduction on blood lipids and lipoproteins: a meta-analysis. Am J Clin Nutr. 1992;56:320–8.

    PubMed  CAS  Google Scholar 

  46. Lewis GF. Fatty acid regulation of very low density lipoprotein production. Curr Opin Lipidol. 1997;8:146–56.

    Article  PubMed  CAS  Google Scholar 

  47. Fruchart JC, Duriez P. Mode of action of fibrates in the regulation of triglyceride and HDL-cholesterol metabolism. Drugs Today (Barc). 2006;42:39–64.

    Google Scholar 

  48. Goldberg RB, Kendall DM, Deeg MA, Buse JB, Zagar AJ, Pinaire JA, et al. A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care. 2005;28:1547–54.

    Article  PubMed  CAS  Google Scholar 

  49. Mittendorfer B, Patterson BW, Klein S. Effect of weight loss on VLDL triglyceride and ApoB-100 kinetics in women with abdominal obesity. Am J Physiol Endocrinol Metab. 2003;284:549–56.

    Google Scholar 

  50. Melish J, Le NA, Ginsberg H, Steinberg D, Brown WV. Dissociation of Apoprotein B and triglyceride production in very low-density lipoproteins. Am J Physiol Endocrinol Metab. 1980;239:E354–62.

    CAS  Google Scholar 

  51. Superko HR, McGovern ME, Raul E, Garrett B. Nicotinic acid has a significantly greater effect on the decrease of small LDL subclass distribution and increase in LDL peak particle diameter in pattern B versus pattern A. Differential effect of two nicotinic acid preparations on low-density lipoprotein subclass distribution in patients classified as low-density lipoprotein pattern A, B or I. Am J Cardiol. 2004;94:588–94.

    Article  PubMed  CAS  Google Scholar 

  52. Superko HR, Berneis KK, Williams PT, Rizzo M, Wood PD. Gemfibrozil reduces small low-density lipoprotein more in normolipemic subjects classified as low density lipoprotein pattern B compared with pattern A. Am J Cardiol. 2005;96:1266–72.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

ISCIII-RETIC RD06, PI052099 and PI051540 funded this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ybarra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ybarra, J., Blanco-Vaca, F., Fernández, S. et al. The Effects of Liposuction Removal of Subcutaneous Abdominal Fat on Lipid Metabolism are Independent of Insulin Sensitivity in Normal-Overweight Individuals. OBES SURG 18, 408–414 (2008). https://doi.org/10.1007/s11695-007-9261-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-007-9261-5

Keywords

Navigation